Abstract
Blue jets are lightning-like, atmospheric electric discharges of several hundred millisecond duration that fan into cones as they propagate from the top of thunderclouds into the stratosphere1. They are thought to initiate in an electric breakdown between the positively charged upper region of a cloud and a layer of negative charge at the cloud boundary and in the air above. The breakdown forms a leader that transitions into streamers2 when propagating upwards3. However, the properties of the leader, and the altitude to which it extends above the clouds, are not well characterized4. Blue millisecond flashes in cloud tops5,6 have previously been associated with narrow bipolar events7,8, which are 10- to 30-microsecond pulses in wideband electric field records, accompanied by bursts of intense radiation at 3 to 300 megahertz from discharges with short (inferred) channel lengths (less than one kilometre)9,10,11. Here we report spectral measurements from the International Space Station, which offers an unimpeded view of thunderclouds, with 10-microsecond temporal resolution. We observe five intense, approximately 10-microsecond blue flashes from a thunderstorm cell. One flash initiates a pulsating blue jet to the stratopause (the interface between the stratosphere and the ionosphere). The observed flashes were accompanied by ‘elves’12 in the ionosphere. Emissions from lightning leaders in the red spectral band are faint and localized, suggesting that the flashes and the jet are streamer ionization waves, and that the leader elements at their origin are short and localized. We propose that the microsecond flashes are the optical equivalent of negative narrow bipolar events observed in radio waves. These are known to initiate lightning within the cloud and to the ground, and blue lightning into the stratosphere, as reported here.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Optical observations of thunderstorms from the International Space Station: recent results and perspectives
npj Microgravity Open Access 04 February 2023
-
Optical emissions associated with narrow bipolar events from thunderstorm clouds penetrating into the stratosphere
Nature Communications Open Access 17 November 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
All the data that are used to produce the figures in this paper are uploaded to Zenodo at https://doi.org/10.5281/zenodo.4066776.
Code availability
Commercial code SMARTS is used for atmospheric transmission calculations. Python is used for plotting.
Change history
12 March 2021
A Correction to this paper has been published: https://doi.org/10.1038/s41586-021-03348-y
References
Wescott, E. M., Sentman, D., Osborne, D., Hampton, D. & Heavner, M. Preliminary results from the Sprites94 aircraft campaign: 2. Blue jets. Geophys. Res. Lett. 22, 1209–1212 (1995).
Ebert, U. et al. Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning. J. Geophys. Res. 115, A00E43 (2010).
Krehbiel, P. R. et al. Upward electrical discharges from thunderstorms. Nat. Geosci. 1, 233–237 (2008).
Mishin, E. V. & Milikh, G. M. Blue jets: upward lightning. Space Sci. Rev. 137, 473–488 (2008).
Wescott, E. M., Sentman, D. D., Heavner, M. J., Osborne, D. L. & Vaughan, O. H. Blue starters: brief upward discharges from an intense Arkansas thunderstorm. Geophys. Res. Lett. 23, 2153–2156 (1996).
Chanrion, O. et al. Profuse activity of blue electrical discharges at the tops of thunderstorms. Geophys. Res. Lett. 44, 496–503 (2017).
Liu, F. et al. Observations of blue discharges associated with negative narrow bipolar events in active deep convection. Geophys. Res. Lett. 45, 2842–2851 (2018).
Chou, J.-K. et al. ISUAL-observed blue luminous events: the associated sferics. J. Geophys. Res. 123, 3063–3077 (2018).
Le Vine, D. M. Sources of the strongest RF radiation from lightning. J. Geophys. Res. 85, 4091–4095 (1980).
Rison, W. et al. Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms. Nat. Commun. 7, 10721 (2016).
Leal, A. & Rakov, V. A. A study of the context in which compact intracloud discharges occur. Sci. Rep. 9, 12218 (2019).
Fukunishi, H., Takahashi, Y. & Kubota, M. Elves: lightning‐induced transient luminous events in the lower ionosphere. Geophys. Res. Lett. 23, 2157–2160 (1996).
Neubert, T. et al. The ASIM mission on the International Space Station. Space Sci. Rev. 215, 26 (2019).
Chanrion, O. et al. The Modular Multispectral Imaging Array (MMIA) of the ASIM payload on the International Space Station. Space Sci. Rev. 215, 28 (2019).
Said, R., Cohen, M. B. & Inan, U. S. Highly intense lightning over the oceans: estimated peak currents from global GLD360 observations. J. Geophys. Res. Atmos. 118, 6905–6915 (2013).
Setvák, M. D. et al. Satellite-observed cold-ring-shaped features atop deep convective clouds. Atmos. Res. 97, 80–96 (2010).
Light, T. E., Suszcynsky, D. M., Kirkland, M. W. & Jacobson, A.R. Simulations of lightning optical waveforms as seen through clouds by satellites. J. Geophys. Res. 106, 17103–17114 (2001).
Orville, R. E. & Henderson, R. W. Absolute spectral irradiance measurements of lightning from 375 to 880 nm. J. Geophys. Res. 41, 3181–3187 (1984).
Stenbaek-Nielsen, H. C., Kanmae, T., McHarg, M. G. & Haaland, R. High-speed observations of sprite streamers. Surv. Geophys. 34, 769–795 (2013).
Pérez-Invernón, F. J., Luque, A. & Gordillo-Vázquez, F. J. Modeling the chemical impact and the optical emissions produced by lightning-induced electromagnetic fields in the upper atmosphere: the case of halos and elves triggered by different lightning discharges. J. Geophys. Res. 123, 7615–7641 (2018).
Neubert, T. et al. Terrestrial gamma-ray flashes and ionospheric UV emissions generated by lightning. Science 367, 183–186 (2020).
Blaes, P. R., Marshall, R. A. & Inan, U. S. Global occurrence rate of elves and ionospheric heating due to cloud-to-ground lightning. J. Geophys. Res. 121, 699–712 (2016).
Riousset, J. A., Pasko, V. P., Krehbiel, P. R., Rison, W. & Stanley, M. A. Modeling of thundercloud screening charges: implications for blue and gigantic jets. J. Geophys. Res. 115, A00E10 (2010).
Liu, N. et al. Upward electrical discharges observed above Tropical Depression Dorian. Nature Commun. 6, 5995 (2015).
da Silva, C. L. & Pasko, V. P. Physical mechanism of initial breakdown pulses and narrow bipolar events in lightning discharges. J. Geophys. Res. Atmos. 120, 4989–5009 (2015).
Wu, T. et al. Discharge height of lightning narrow bipolar events. J. Geophys. Res. 117, D05119 (2012).
Soler, S., et al., Blue optical observations of narrow bipolar events by ASIM confirm streamer activity in thunderstorms. J. Geophys. Res. Atmos. 125, e2020JD032708 (2020).
Marshall, R. A., da Silva, C. L. & Pasko, V. P. Elve doublets and compact intracloud discharges. Geophys. Res. Lett. 42, 6112–6119 (2015).
Cooray, V., Cooray, G., Rubinstein, M. & Rachidi, F. Modeling compact intracloud discharge (CID) as a streamer burst. Atmosphere 11, 549–575 (2020).
Jacobson, A. R., Light, T. E. L., Hamlin, T. & Nemzek, R. Joint radio and optical observations of the most radio-powerful intracloud lightning discharges. Ann. Geophys. 31, 563–580 (2013).
Bessho, K. et al. An introduction to Himawari-8/9, Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. 94, 151–183 (2016).
Frey, H. U. et al. The Imager for Sprites and Upper Atmospheric Lightning (ISUAL). J. Geophys. Res. 121, 8134–8145 (2016).
Kuo, C. L. et al. Modeling elves observed by FORMOSAT-2 satellite. J. Geophys. Res. 112, A11312 (2007).
Ihaddadene, M. A. & Celestin, S. Determination of sprite streamers altitude based on N2 spectroscopic analysis. J. Geophys. Res. 122, 1000–1014 (2017).
Šimek, M. Optical diagnostics of streamer discharges in atmospheric gases. J. Phys. D 47, 463001 (2014).
Mende, S. B. et al. D region ionization by lightning-induced electromagnetic pulses. J. Geophys. Res. 110, A11312 (2005).
Hedin, A. E. Extension of the MSIS thermosphere model into the middle and lower atmosphere. J. Geophys. Res. 96, 1159–1172 (1991).
Liu, N. et al. Comparison of results from sprite streamer modelling with spectroscopic measurements by ISUAL instrument on FORMOSAT-2 satellite. Geophys. Res. Lett. 33, L01101 (2006).
Gueymard, C. A. The SMARTS spectral irradiance model after 25 years: new developments and validation of reference spectra. Sol. Energy 187, 233–253 (2019).
Hudson, R. D. Critical review of ultraviolet photoabsorption cross sections for molecules of astrophysical and aeronomic interest. Rev. Geophys 9, 305–406 (1971).
SCIAMACHY Data (Molecular Spectroscopy at IUP Bremen, accessed 1 June 2010); https://www.iup.uni-bremen.de/gruppen/molspec/databases/sciamachydata/index.html.
Ackerman, M. Ultraviolet solar radiation related to mesospheric processes. In Mesospheric Models and Related Experiments (ed. Fiocco, G.) 149–159 (Springer, 1971).
Bogumil, K., Orphal, J. & Burrows, J. P. Temperature dependent absorption cross sections of O3, NO2, and other atmospheric trace gases measured with the SCIAMACHY spectrometer. In Proc. ERS-Envisat Symposium 99 (2001).
Acknowledgements
ASIM is a mission of ESA’s SciSpace programme for scientific utilization of the ISS and non-ISS space exploration platforms and space environment analogues. ASIM and the ASIM Science Data Centre are funded by ESA and by national grants of Denmark, Norway and Spain. This project received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant 296 agreement 722337. The Norwegian analysis was supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement number 320839, and the Research Council of Norway under contracts 208028/F50 and 223252/F50 (CoE). The Spanish contribution was supported by Ministerio Ciencia e Innovación grant ESP 2017-86263-C4. We thank Vaisala for the GLD360 lightning data.
Author information
Authors and Affiliations
Contributions
T.N. is principal investigator of the ASIM project, N.Ø. and V.R. are co-investigators. T.N. led the writing of the paper, with comments to the manuscript by all co-authors. T.N. and O.C. led the interpretation of the measurements. O.C. and K.D. converted and plotted cloud measurements to altitude (Fig. 1a). L.H. and O.C. projected events to the cloud tops (Fig. 1b). M.H. plotted photometer data, and O.C. plotted the camera data. O.C. and M.H. performed corrections to the ISS clock. I.L.R. supported the in-flight calibration of the photometers.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature thanks Vladimir Rakov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 Event 1 on 26 February 2019.
t = 0 ms corresponds to 15:10:40.000 utc. a, b, The photometer signals as functions of time around the first blue flash. The same data are shown on a linear scale (a) and a logarithmic scale (b). c, The photometer signals on a longer time scale that corresponds to the four camera frames downlinked. d, e, Four frames of the blue (d) and red (e) cameras. The colour scale is adjusted to the maximum pixel value of each image; from left to right the maxima are: 9,113, 4,350, 5,916 and 84 μW sr−1m−2 (d); and 1,450, 61, 70 and 71 μW sr−1 m−2 (e). The blue photometer signal decays over many hundred ms and has three pulses, resembling the blue jet of flash 3. The white arrows point towards the direction of the ISS.
Extended Data Fig. 2 Event 2 on 26 February 2019.
t = 0 ms corresponds to 15:11:04.000 utc. During this event, a lightning flash triggers an elve ~800 μs before a blue flash (Fig. 4b, d). a, The photometer signals on a time scale that corresponds to the camera frames downlinked. The red peaks are lightning and the UV peaks are associated elves. b, c, The camera images are shown with a colour scale that is adjusted to the maximum pixel value of each image; from left to right the maxima for the blue camera frames are: 7,890, 5,026, 387, 237, 449 and 200 μW sr−1 m−2 (b); and for the red camera frames: 423, 146, 169, 129, 191 and 109 μW sr−1 m−2 (c).
Extended Data Fig. 4 Event 4 on 26 February 2019.
t = 0 ms corresponds to 15:11:13.000 utc. The blue flash of Fig. 4a, c. a, The photometer signal on a time scale that corresponds to the camera frames downlinked. b, c, The camera images with a colour scale that is adjusted to the maximum pixel value of each image; from left to right the maxima for the blue camera frames are: 1, 7,604 and 2,380 μW sr−1 m−2 (b); and for the red camera frames: 1, 261 and 55 μW sr−1 m−2 (c).
Extended Data Fig. 5 Event 5 on 26 February 2019.
t = 0 ms corresponds to 15:11:25.000 utc. a, b, The photometer signals as functions of time around the blue flash. The same data are shown on a linear scale (a) and a logarithmic scale (b). c, The photometer signals on a longer time scale that corresponds to the camera frames downlinked. d, e, The camera images with a colour scale that is adjusted to the maximum pixel value of each image; from left to right the maxima for the blue camera frames are: 1, 10,027 and 13 μW sr−1 m−2 (d); and for the red camera frames: 1, 113, 54 μW sr−1 m−2 (e).
Supplementary information
Rights and permissions
About this article
Cite this article
Neubert, T., Chanrion, O., Heumesser, M. et al. Observation of the onset of a blue jet into the stratosphere. Nature 589, 371–375 (2021). https://doi.org/10.1038/s41586-020-03122-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-020-03122-6
This article is cited by
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.