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            Abstract
Since its introduction, the reward prediction error theory of dopamine has explained a wealth of empirical phenomena, providing a unifying framework for understanding the representation of reward and value in the brain1,2,3. According to the now canonical theory, reward predictions are represented as a single scalar quantity, which supports learning about the expectation, or mean, of stochastic outcomes. Here we propose an account of dopamine-based reinforcement learning inspired by recent artificial intelligence research on distributional reinforcement learning4,5,6. We hypothesized that the brain represents possible future rewards not as a single mean, but instead as a probability distribution, effectively representing multiple future outcomes simultaneously and in parallel. This idea implies a set of empirical predictions, which we tested using single-unit recordings from mouse ventral tegmental area. Our findings provide strong evidence for a neural realization of distributional reinforcement learning.
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                    Fig. 1: Distributional value coding arises from a diversity of relative scaling of positive and negative prediction errors.[image: ]


Fig. 2: Different dopamine neurons consistently reverse from positive to negative responses at different reward magnitudes.[image: ]


Fig. 3: Optimistic and pessimistic probability coding occur concurrently in dopamine and VTA GABAergic neurons.[image: ]


Fig. 4: Relative scaling of positive and negative dopamine responses predicts reversal point.[image: ]


Fig. 5: Decoding reward distributions from neural responses.[image: ]
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                Data availability


The neuronal data analysed in this work are available at https://doi.org/10.17605/OSF.IO/UX5RG.



Code availability


The analysis code from our value-distribution decoding and code used to generate model predictions for distributional TD are available at https://doi.org/10.17605/OSF.IO/UX5RG.
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Extended data figures and tables

Extended Data Fig. 1 Mechanism of distributional TD.
a, The degree of asymmetry in positive to negative scale determines the equilibrium where positive and negative errors balance. Equal scaling equilibrates at the mean, whereas a larger positive (negative) scaling produces an equilibrium above (below) the mean. b, Distributional prediction emerges through experience. Quantile (sign function) version is displayed here for clarity. Model is trained on arbitrary task with trimodal reward distribution. c, Same as b, viewed in terms of cumulative distribution (left) or learned value for each predictor (quantile function) (right).


Extended Data Fig. 2 Learning the distribution of returns improves performance of deep RL agents across multiple domains.
a, DQN and distributional TD share identical nonlinear network structures. b, c, After training classical or distributional DQN on MsPacman, we freeze the agent and then train a separate linear decoder to reconstruct frames from the agent’s final layer representation. For each agent, reconstructions are shown. The distributional model’s representation allows substantially better reconstruction. d, At a single frame of MsPacman (not shown), the agent’s value predictions together represent a probability distribution over future rewards. Reward predictions of individual RPE channels shown as tick marks ranging from pessimistic (blue) to optimistic (red), and kernel density estimate shown in black. e, Atari-57 experiments with single runs of prioritized experience replay40 and double DQN41 agents for reference. Benefits of distributional learning exceed other popular innovations. f, g, The performance pay-off of distributional RL can be seen across a wide diversity of tasks. Here we give another example, a humanoid motor-control task in the MuJoCo physics simulator. Prioritized experience replay agent is shown for reference14. Traces show individual runs; averages are in bold.


Extended Data Fig. 3 Simulation experiment to examine the role of representation learning in distributional RL.
a, Illustration of tasks 1 and 2. b, Example images for each class used in our experiment42 c, Experimental results, where each of ten random seeds yields an individual run shown with traces; average over seeds is shown in bold. d, Same as c, but for control experiment. e, Bird–dog t-SNE visualization of final hidden layer of network, given different input images (blue, bird; red, dog). Left, classical TD; right, distributional TD; top row, representation after training on task 1; bottom row, representation after training on task 2.


Extended Data Fig. 4 Null models.
a, Classical TD plus noise does not give rise to the pattern of results observed in real dopamine data in the variable-magnitude task. When reversal points were estimated in two independent partitions there was no correlation between the two (P = 0.32 by linear regression). b, We then estimated asymmetric scaling of responses and found no correlation between this and reversal point (P = 0.78 by linear regression). c, Model comparison between ‘same’, a single reversal point, and ‘diverse’, separate reversal points. In both, the model is used to predict whether a held-out trial has a positive or negative response. d, Simulated baseline-subtracted RPEs, colour-coded according to the ground-truth value of bias added to that cell’s RPEs. e, Across all simulated cells, there was a strong positive relationship between pre-stimulus baseline firing and the estimated reversal point. f, Two independent measurements of the reversal point were strongly correlated. g, The proportion of simulated cells that have significantly positive (blue) or negative (red) responses showed no magnitudes with both positive and negative responses. h, In the simulation, there was a significant negative relationship between the estimated asymmetry of each cell and its estimated reversal point (opposite that observed in neural data). i, Diagram illustrating a Gaussian-weighted topological mapping between RPEs and value predictors. j, Varying the standard deviation of this Gaussian modulates the degree of coupling. k, In a task with equal chance of a reward 1.0 or 0.0, distributional TD with different levels of coupling shows robustness to the degree of coupling. l, When there is no coupling, a distributional code is not learned, but asymmetric scaling can cause spurious detection of diverse reversal points. m, Even though every cell has the same reward prediction they appear to have different reversal points. n, With this model, some cells may have significantly positive responses, and others significantly negative responses, in response to the same reward. o, But this model is unable to explain a positive correlation between asymmetric scaling and reversal points. p, Simulation of ‘synaptic’ distributional RL, in which learning rates but not firing rates are asymmetrically scaled. This model predicts diversity in reversal points between dopamine neurons. q, The model predicts no correlation between asymmetric scaling of firing rates and reversal point.


Extended Data Fig. 5 Asymmetry and reversal.
a, Left, all data points (trials) from an example cell. The solid lines are linear fits to the positive and negative domains, and the shaded areas show 95% confidence intervals calculated with Bayesian regression. Right, the same cell plotted in the format of Fig. 4b. b, Cross-validated model comparison on the dopamine data favours allowing each cell to have its own asymmetric scaling (P = 1.4 × 10−11 by paired t-test). The standard error of the mean appears large relative to the P value because the P value is computed using a paired test. c, Although the difference between single-asymmetry and diverse-asymmetry models was small in firing-rate space, such small differences correspond to large differences in decoded distribution space (more details in Supplementary Information). Each point is a TD simulation; colour indicates the degree of diversity in asymmetric scaling within that simulation. d, We were interested in whether an apparent correlation between reversal point and asymmetry could arise as an artefact, owing to a mismatch between the shape of the actual dopamine response function and the function used to fit it. Here we simulate the variable-magnitude task using a TD model without a true correlation between asymmetric scaling and reversal point. We then apply the same analysis pipeline as in the main paper, to measure the correlation (colour axis) between asymmetric scaling and reversal point. We repeat this procedure 20 times with different dopamine response functions in the simulation, and different functions used to fit the positive and negative domains of the simulated data. The functions are sorted in increasing order of concavity. An artefact can emerge if the response function used to fit the data is less concave than the response function used to generate the data. For example, when generating data with a Hill function but fitting with a linear function, a positive correlation can be spuriously measured. e, When simulating data from the distributional TD model, where a true correlation exists between asymmetric scaling and reversal point, it is always possible to detect this positive correlation, even if the fitting response function is more concave than the generating response function. The black rectangle highlights the function used to fit real neural data in c. f, Here we analyse the real dopamine cell data identically to Fig. 4d, but using Hill functions instead of linear functions to fit the positive and negative domains. Because the correlation between asymmetric scaling and reversal point still appears under these adversarial conditions, we can be confident it is not driven by this artefact. g, Same as Fig. 4d, but using linear response function and linear utility function (instead of empirical utility).


Extended Data Fig. 6 Cue responses versus outcome responses, and more evidence for diversity.
a, In the variable-probability task: firing at cue, versus firing at reward (left) or omission (right). Colour brightness denotes asymmetry. b, Same as a, but showing RPEs from distributional TD simulation. c, Data from ref. 30 also included unpredicted rewards and unpredicted airpuffs. Top two panels show responses for all the cells recorded in one animal and bottom two panels show responses for all the cells of another animal. Left, the x axis is the baseline-subtracted response to free reward and the y axis is the baseline-subtracted response to airpuff. Dots with black outlines are per-cell means, and un-outlined dots are means of disjoint subsets of trials indicating consistency of asymmetry. Right, the same data plotted in a different way, with cells sorted along the x axis by response to airpuff. Response to reward is shown in greyscale dots. Asterisks indicate significant difference in firing rates from one or both neighbouring cells. d, Simulations for distributional but not classical TD produce diversity in relative response.


Extended Data Fig. 7 More details of data in variable-probability task.
a, Details of analysis method. Of the four possible outcomes of the two Mann–Whitney tests (Methods), two outcomes correspond to interpolation (middle) and one each to the pessimistic (left) and optimistic (right) groups. b, Simulation results for the classical TD and distributional TD models. y axis shows the average firing-rate change, normalized to mean zero and unit variance, in response to each of the three cues. Each curve is one cell. The cells are split into panels according to a statistical test for type of probability coding (see Methods for details). Colour indicates the degree of optimism or pessimism. Distributional TD predicts simultaneous optimistic and pessimistic coding of probability, whereas classical TD predicts all cells have the same coding. c, Same as b, but using data from real dopamine neurons. The pattern of results closely matches the predictions from the distributional TD model. d, Same as b, using data from putative VTA GABAergic interneurons.


Extended Data Fig. 8 Further distribution decoding analysis.
This figure pertains to the variable-magnitude experiment. a–c, In the decoding shown in the main text, we constrained the support of the distribution to the range of the rewards in the task. Here, we applied the decoding analysis without constraining the output values. We find similar results, although with increased variance. d, We compare the quality of the decoded distribution against several controls. The real decoding is shown as black dots. In coloured lines are reference distributions (uniform and Gaussian with the same mean and variance as the ground truth; and the ground truth mirrored). Black traces shift or scale the ground-truth distribution by varying amounts. e, Nonlinear functions used to shift asymmetries, to measure degradation of decoded distribution. The normal cumulative distribution function ϕ is used to transform asymmetry τ. This is shifted by some value s and transformed back through the normal quantile function ϕ−1. Positive values s increase the value of τ and negative values decrease the value of τ. f, Decoded distributions under different shifts, s. g, Plot of shifted asymmetries for values of s used. h, Quantification of match between decoded and ground-truth distribution, for each s. i, j, Same as Fig. 5d, e, but for putative GABAergic cells rather than dopamine cells.


Extended Data Fig. 9 Simultaneous diversity.
a, b, Variable-probability task. Mean spiking (a) and licking (b) activity in response to each of the three cues (indicating 10%, 50% or 90% probability of reward) at time 0, and in response to the outcome (reward or no reward) at time 2,000 ms. c, Trial-to-trial variations in lick rates were strongly correlated with trial-to-trial variations in dopamine firing rates. Mean of each cell is subtracted from each axis, and the x axis is binned for ease of visualization. d, Dopaminergic coding of the 50% cue relative to the 10% and 90% cues (as shown in b) was not correlated with the same measure computed on lick rates. Therefore, between-session differences in cue preference, measured by anticipatory licking, cannot explain between-cell differences in optimism. e, Four simultaneously recorded dopamine neurons. These are the same four cells whose time courses are shown in Fig. 3c. f, Variable-magnitude task. Across cells, there was no relationship between asymmetric scaling of positive versus negative prediction errors, and baseline firing rates (R = 0.18, P = 0.29). Each point is a cell. These data are from dopamine neurons at reward delivery time. g, t-statistics of response to 5 μl reward compared with baseline firing rate, for all 16 cells from animal D. Some cells respond significantly above baseline and others significantly below. Cells are sorted by t-statistic. h, Spike rasters showing all trials in which the 5 μl reward was delivered. The two panels are two example cells from the same animal with rasters shown in Fig. 2.


Extended Data Fig. 10 Relationship of results to original analysis.
Here we reproduce results for the variable-magnitude task in ref. 30 with two different time windows. a, Change in firing rate in response to cued reward delivery averaged over all cells. b, Comparing Hill-function fit and response averaged over all cells for expected (cued) and unexpected reward delivery. c, Correlation between response predicted by scaled common response function and actual response to expected reward delivery. d, Zooming in on c shows correlation driven primarily by larger reward magnitudes. e–h, Repeating the above analysis for a window of 200–600 ms.
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