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            Abstract
Adoptive cell therapy represents a new paradigm in cancer immunotherapy, but it can be limited by the poor persistence and function of transferred T cells1. Here we use an in vivo pooled CRISPRâ€“Cas9 mutagenesis screening approach to demonstrate that, by targeting REGNASE-1, CD8+ T cells are reprogrammed to long-lived effector cells with extensive accumulation, better persistence and robust effector function in tumours. REGNASE-1-deficient CD8+ T cells show markedly improved therapeutic efficacy against mouse models of melanoma and leukaemia. By using a secondary genome-scale CRISPRâ€“Cas9 screening, we identify BATF as the key target of REGNASE-1 and as a rheostat that shapes antitumour responses. Loss of BATF suppresses the increased accumulation and mitochondrial fitness of REGNASE-1-deficient CD8+ T cells. By contrast, the targeting of additional signalling factorsâ€”including PTPN2 and SOCS1â€”improves the therapeutic efficacy of REGNASE-1-deficient CD8+ T cells. Our findings suggest that T cell persistence and effector function can be coordinated in tumour immunity and point to avenues for improving the efficacy of adoptive cell therapy for cancer.
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                    Fig. 1: In vivo CRISPRâ€“Cas9 screening identifies REGNASE-1 as a major negative regulator of the antitumour responses of CD8+ T cells.


Fig. 2: Deletion of REGNASE-1 enhances the efficacy of ACT against solid and blood cancers.


Fig. 3: Deletion of REGNASE-1 reprograms tumour-infiltrating CD8+ T cells to long-lived effector cells.


Fig. 4: BATF is a key REGNASE-1 functional target for mediating mitochondrial fitness and effector responses.


Fig. 5: Genome-scale CRISPR screening identifies PTPN2 and SOCS1 as additional targets for enhancing the antitumour activity of REGNASE-1-null CD8+ T cells.
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Extended data figures and tables

Extended Data Fig. 1 Validation of the effect of REGNASE-1 deletion on CD8+ T cell accumulation in tumour immunity using the in vivo dual transfer system.
a, Diagram of the in vivo dual transfer system. OT-I cells transduced with sgRNA viral vectors expressing distinct fluorescent proteins were mixed and transferred into the same tumour-bearing hosts, in which further analyses were performed. b, Gating strategy for sgRNA-transduced OT-I cell analysis. c, d, OT-I cells transduced with non-targeting control sgRNA (mCherry+) were mixed at a 1:1 ratio with cells either transduced with control sgRNA (ametrine+) (c (nÂ =Â 2), d (nÂ =Â 5), left, top) or two different sgRNAs targeting Regnase-1 (Regnase-1 sgRNA, ametrine+, c (nÂ =Â 4), left, bottom; or Regnase-1 sgRNA no.Â 2, ametrine+, d (nÂ =Â 5), left, bottom), and transferred into tumour-bearing hosts. Mice were analysed at 7Â days after adoptive transfer for the proportion of OT-I cells in CD8Î±+ cells (c, d, left), and the quantification of relative OT-I cell percentages in CD8Î±+ cells (normalized to input) in the spleen and TILs (c, d, right). Numbers in plots indicate the frequencies of OT-I cells. e, OT-I cells transduced with control sgRNA (ametrine+) were mixed at a 1:1 ratio with cells transduced with Regnase-1 sgRNA (mCherry+) and transferred into tumour-bearing hosts (nÂ =Â 5). Mice were analysed at 7Â days after adoptive transfer for the proportion of OT-I cells in CD8Î±+ cells (left), and the quantification of relative OT-I cell percentage in CD8Î±+ cells (normalized to input) in the spleen and TILs (right). Numbers in plots indicate the frequencies of OT-I cells. f, Insertion and deletion (indel) mutations after CRISPR targeted disruption in OT-I cells transduced with either control sgRNA or Regnase-1 sgRNA, via deep sequencing analysis of indels generated at the exonic target site of the Regnase-1 gene, including 97.3% of indel events in Regnase-1-sgRNA-transduced cells isolated from tumours compared to 1.3% in control-sgRNA-transduced cells. MeanÂ Â±Â s.e.m. (câ€“e). ***PÂ <Â 0.001. Two-tailed unpaired Studentâ€™s t-test (d, e). Data are representative of two independent experiments (e).

Source data



Extended Data Fig. 2 Tumour-infiltrating and peripheral REGNASE-1-null CD8+ T cells show distinct immune signatures.
a, b, GSEA enrichment plots of antigen-specific CXCR5+ and CXCR5âˆ’ exhausted CD8+ T cells from chronic infection using gene targets repressed by REGNASE-1 (that is, the top 100 upregulated genes in TIL Regnase-1-sgRNA- compared to control-sgRNA-transduced OT-I cells, as identified using RNA-seq). c, Representative images (left) and quantification of MFI (right) of TCF-1 expression (pink) in control-sgRNA- (mCherry+; red) and Regnase-1-sgRNA-transduced OT-I cells (ametrine+; green) in the whole-tumour section (nÂ =Â 4 mice). Scale bars, 20Â Î¼m. d, e, Gene-expression heat maps normalized by row (z-score) for the naive- or memory-T-cell-associated transcription factors (d) or effector- or exhausted-T-cell-associated transcription factors (e) in control-sgRNA- (nÂ =Â 4) and Regnase-1-sgRNA (nÂ =Â 5)-transduced OT-I cells isolated from TILs. Specifically, control-sgRNA- and Regnase-1-sgRNA-transduced OT-I cells were mixed and transferred into tumour-bearing mice, and tumour-infiltrating OT-I cells were isolated at dayÂ 7 for transcriptional profiling by RNA-seq. f, Real-time PCR analysis of Irf4 mRNA expression in control-sgRNA- (nÂ =Â 4 samples) and Regnase-1-sgRNA (nÂ =Â 5 samples)-transduced OT-I cells isolated from TILs. g, Summary of ATAC-seq motif enrichment data showing log2(odds ratio) and âˆ’log10(FDR) of cells from control-sgRNA- and Regnase-1-sgRNA-transduced OT-I cells isolated from TILs (nÂ =Â 4 samples per group). Specifically, control-sgRNA- and Regnase-1-sgRNA-transduced OT-I cells were mixed and transferred into tumour-bearing mice, and tumour-infiltrating OT-I cells were isolated at dayÂ 7 for ATAC-seq analysis. h, Tn5 insert sites from ATAC-seq analysis were aligned to motifs for transcription factors from the TRANSFAC database, and the binding profiles of TCF-1, BACH2, BCL6 and IRF4 are shown. i, Venn diagram showing the overlap of significantly upregulated (left, Regnase-1-sgRNA- (nÂ =Â 5 samples) versus control-sgRNA-transduced OT-I cells (nÂ =Â 4 samples)) or downregulated genes (right, Regnase-1-sgRNA- versus control-sgRNA-transduced OT-I cells) by RNA-seq profiling between TIL and PLN OT-I cells. Specifically, control-sgRNA- and Regnase-1-sgRNA-transduced OT-I cells were mixed and transferred into tumour-bearing mice, and OT-I cells were isolated at dayÂ 7 for transcriptional profiling by RNA-seq. j, GSEA enrichment plots of PLN Regnase-1-sgRNA- (nÂ =Â 5) versus control-sgRNA (nÂ =Â 4)-transduced OT-I cells using gene sets of four different tumour-infiltrating CD8 T cell activation states11. Specifically, control-sgRNA- and Regnase-1-sgRNA-transduced OT-I cells were mixed and transferred into tumour-bearing mice, and PLN OT-I cells were isolated at dayÂ 7 for transcriptional profiling by RNA-seq. k, OT-I cells transduced with control sgRNA (mCherry+) and Regnase-1 sgRNA (ametrine+) were mixed and transferred into tumour-bearing mice (nÂ =Â 5 mice), and OT-I cells in the spleen were analysed at dayÂ 7 for expression of TCF-1 (top), and quantification of the frequency of TCF-1+ cells (bottom). Numbers in graphs indicate the frequencies of cells in gates. MeanÂ Â±Â s.e.m. (c, f, k). *PÂ <Â 0.05, **PÂ <Â 0.01, ***PÂ <Â 0.001. Kolmogorovâ€“Smirnov test followed by Benjaminiâ€“Hochberg correction (a, b, j), two-tailed unpaired Studentâ€™s t-test (c, f, k), two-sided Fisherâ€™s exact test followed by Benjaminiâ€“Hochberg correction (g) or two-sided Fisherâ€™s exact test (i). Data are representative of two independent experiments (c, f, k).
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Extended Data Fig. 3 Upstream signals regulate REGNASE-1 expression and REGNASE-1-null cell phenotypes.
a, Immunoblot analysis of REGNASE-1 expression in control-sgRNA-transduced OT-I cells isolated from PLN and TILs at 7Â days after adoptive transfer (nÂ =Â 4Â samples per group) (top). Quantification of the relative intensity of REGNASE-1 expression (bottom). Î²-Actin is used as a loading control. b, GSEA enrichment plots of PLN and TIL control-sgRNA-transduced OT-I cells (nÂ =Â 4) used in a, by using gene targets repressed by REGNASE-1 (that is, the top 100 upregulated genes in TIL Regnase-1-sgRNA- compared to control-sgRNA-transduced cells, as identified using RNA-seq). c, OT-I cells were stimulated with anti-CD3 and anti-CD28 overnight before viral transduction, and then cultured in IL-7- and IL-15-containing medium for another 3Â days in vitro. Pre-activated OT-I cells were then stimulated with anti-CD3, IL-2 or IL-21 for 0, 1 and 4 h (nÂ =Â 5 samples per group) for immunoblot analysis of full-length and cleaved REGNASE-1 (top), and quantification of the relative intensity of cleaved REGNASE-1 expression (bottom). Î²-Actin is used as a loading control. d, e, OT-I cells transduced with control sgRNA (mCherry+) and Regnase-1 sgRNA (ametrine+) were mixed at a 1:1 ratio and transferred into mice bearing B16Â Ova (nÂ =Â 6Â mice) or B16Â F10 (nÂ =Â 6Â mice) tumours. Mice were analysed at dayÂ 7 after adoptive transfer for quantification of relative OT-I cell percentage in total cells (normalized to input) in the TILs (d) and expression of TCF-1 (e, left), and quantification of the frequency of TCF-1+ cells (e, right) in tumour-infiltrating OT-I cells. f, g, OT-I cells were stimulated with anti-CD3 and anti-CD28 overnight before viral transduction, and then cultured in IL-2-, IL-7- and IL-15-containing medium for another 3Â days in vitro. Pre-activated OT-I cells were then continuously cultured in normoxia (21% O2) or hypoxia (1% O2) conditions for 48Â h for immunoblot analysis of expression of HIF1Î±, REGNASE-1 and BATF (f), and for flow cytometry analysis of the expression of BATF, CD69, GZMB, CD25 and TCF-1 (g). Numbers in graphs indicate MFI (g). Î²-Actin is used as a loading control. MeanÂ Â±Â s.e.m. (a, câ€“e). *PÂ <Â 0.05, **PÂ <Â 0.01, ***PÂ <Â 0.001. Two-tailed unpaired Studentâ€™s t-test (a), Kolmogorovâ€“Smirnov test followed by Benjaminiâ€“Hochberg correction (b) or one-way ANOVA (câ€“e). Data are representative of two (c, f, g) independent experiments, or pooled from two (d, e) independent experiments.
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Extended Data Fig. 4 Proliferation and survival analyses of REGNASE-1-null CD8+ T cells in tumour immunity.
a, List of the top-10 significantly (FDRÂ <Â 0.05) upregulated and downregulated pathways in TIL Regnase-1-sgRNA-transduced OT-I cells, as revealed by performing GSEA using Hallmark gene sets. Specifically, control-sgRNA- (nÂ =Â 4) and Regnase-1-sgRNA (nÂ =Â 5)-transduced OT-I cells were mixed and transferred into tumour-bearing mice, and tumour-infiltrating OT-I cells were isolated at dayÂ 7 for transcriptional profiling by RNA-seq. b, GSEA enrichment plots of TIL Regnase-1-sgRNA-transduced OT-I cells using cell-cycling-associated gene sets, including E2F targets (top), G2M checkpoint (middle) and mitotic spindle (bottom). câ€“g, OT-I cells transduced with control sgRNA (mCherry+) and Regnase-1 sgRNA (ametrine+) were mixed and transferred into tumour-bearing mice, and tumour-infiltrating OT-I cells were analysed at dayÂ 7 (dâ€“g) (nÂ =Â 6 mice) and dayÂ 14 (c) (nÂ =Â 5Â mice) by flow cytometry for Ki-67 expression (c, left; e, left), BrdU incorporation (d, top; pulse for 18Â h), activeÂ caspase-3 expression (f, left), Ser139 phosphorylation of histone variant H2A.X (g, top), and quantification of MFI of Ki-67 (c, right; e, right), frequency of BrdU+ cells (d, bottom), frequency of activeÂ caspase-3+ cells (f, right) and the frequency of the Ser139-phosphorylated histone variant H2A.X+ cells (g, bottom). Numbers in graphs indicate the MFI of Ki-67 (c, left; e, left). Numbers in plots indicate the frequencies of BrdU+ cells (d, top), activeÂ caspase-3+ cells (f, left) and Ser139-phosphorylated histone variant H2A.X+ cells (g, top). h, List of the top-15 significantly (FDRÂ <Â 0.05) upregulated and top-4 significantly downregulated pathways in PLN Regnase-1-sgRNA-transduced OT-I cells, as revealed by performing GSEA using Hallmark gene sets. Specifically, control-sgRNA- (nÂ =Â 4) and Regnase-1-sgRNA (nÂ =Â 5)-transduced OT-I cells were mixed and transferred into tumour-bearing mice, and PLN OT-I cells were isolated at dayÂ 7 for transcriptional profiling by RNA-seq. i, j, OT-I cells transduced with control sgRNA (mCherry+) and Regnase-1 sgRNA (ametrine+) were mixed and transferred into tumour-bearing mice, and OT-I cells in the spleen were analysed at dayÂ 7 (i, j) (nÂ =Â 6Â mice) by flow cytometry for BrdU incorporation (i, top; pulse for 18Â h) and active caspase-3 expression (j, top), and quantification of frequencies of BrdU+ cells (i, bottom) and activeÂ caspase-3+ cells (j, bottom). Numbers in plots indicate the frequencies of BrdU+ cells (i, top) and activeÂ caspase-3+ cells (j, top). MeanÂ Â±Â s.e.m. (câ€“g, i, j). *PÂ <Â 0.05, **PÂ <Â 0.01, ***PÂ <Â 0.001. Kolmogorovâ€“Smirnov test followed by Benjaminiâ€“Hochberg correction (a, b, h) or two-tailed unpaired Studentâ€™s t-test (câ€“g, i, j). Data are representative of two (c) independent experiments, or pooled from two (dâ€“g, i, j) independent experiments.
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Extended Data Fig. 5 Effector molecule expression of tumour-infiltrating REGNASE-1-null CD8+ T cells.
a, b, OT-I cells transduced with control sgRNA (mCherry+) or Regnase-1 sgRNA (ametrine+) were mixed at a 5:1 ratio and transferred into tumour-bearing mice (nÂ =Â 5Â mice), and tumour-infiltrating OT-I cells were analysed at dayÂ 7 for the expression of CD69, CD25, CD49a, KLRG1, ICOS, LAG3, PD-1 and CTLA4 (a, top) and CD44 and CD62L (b, top), and quantification of MFI of CD69, CD25, CD49a, KLRG1, ICOS, LAG3, PD-1 and CTLA4 (a, bottom) and frequency of CD44+CD62Lâˆ’ cells (b, bottom). The numbers in graphs indicate the MFI (a, top). The numbers in plots indicate the frequency of CD44+CD62Lâˆ’ cells (b, top). câ€“f, OT-I cells transduced with control sgRNA (mCherry+) or Regnase-1 sgRNA (ametrine+) were mixed at a 5:1 ratio and transferred into tumour-bearing mice, and analysed at dayÂ 7 (nÂ =Â 10Â mice) or dayÂ 14 (nÂ =Â 10Â mice). Flow cytometry analysis of expression of IFNÎ³ (c, top), GZMB (c, bottom), TNF (e, top) and IL-2 (e, bottom) in TIL OT-I cells, and quantification of the numbers of IFNÎ³+ cells (d, top), GZMB+ cells (d, bottom), TNF+ cells (f, left) and IL-2+ cells (f, right) per gram of tumour (normalized to input). The numbers adjacent to outlined areas indicate the frequencies of IFNÎ³+ cells and the MFI of IFNÎ³ in IFNÎ³+ cells (c, top), and the frequency of GZMB+ cells and the MFI of GZMB in GZMB+ cells (c, bottom), and the frequencies of TNF+ cells (e, top) or IL-2+ cells (e, bottom). MeanÂ Â±Â s.e.m. (a, b, d, f). *PÂ <Â 0.05, **PÂ <Â 0.01, ***PÂ <Â 0.001. Two-tailed unpaired Studentâ€™s t-test (a, b) or two-tailed paired Studentâ€™s t-test (d, f). Data are representative of two (aâ€“c, e) independent experiments, or pooled from two (d, f) independent experiments.
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Extended Data Fig. 6 scRNA-seq and flow cytometry analyses of tumour-infiltrating REGNASE-1-null OT-I cells.
aâ€“e, scRNA-seq analysis of control-sgRNA- and Regnase-1-sgRNA-transduced OT-I cells isolated from TILs. Specifically, control-sgRNA- and Regnase-1-sgRNA-transduced OT-I cells were mixed and transferred into tumour-bearing mice, and tumour-infiltrating OT-I cells were isolated at dayÂ 7 for transcriptional profiling by scRNA-seq. t-SNE visualization of Pdcd1 (a, top), Havcr2 (a, bottom), Ifng (c, top), Gzmb (c, bottom), Batf (d) and Id2 (e) gene expression, and â€˜CXCR5+ exhausted CD8 (Ahmed)12â€™ (b, top) and â€˜CXCR5+ exhausted CD8 (Yu)13â€™ (b, bottom) gene signatures in individual cells. f, OT-I cells transduced with control sgRNA and Regnase-1 sgRNA were mixed and transferred into tumour-bearing mice (nÂ =Â 5Â mice; data from 1Â representative mouse are shown), and tumour-infiltrating OT-I cells were analysed at dayÂ 7 for the expression of TOX, SLAMF6, CD127, KLRG1, TIM3 and PD-1 in TCF-1+ and TCF-1âˆ’ cells of control-sgRNA- and Regnase-1-sgRNA-transduced OT-I cells. Numbers in graphs indicate the meanÂ Â±Â s.e.m. of MFI of markers on the x-axis after gating on TCF-1+ or TCF-1âˆ’ subsets. Data are representative of two independent experiments (f).
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Extended Data Fig. 7 Genome-scale CRISPR screening identifies BATF as an important REGNASE-1 functional target in tumour immunity.
a, Scatter plot of the enrichment of each gene versus its adjusted PÂ value in genome-scale CRISPR screening. Gene enrichment was calculated by averaging the enrichment of the corresponding sgRNAs (nÂ =Â 4 for each gene) in tumour-infiltrating OT-I cells relative to input (log2(TIL/input ratio)), with the most extensively enriched (red) and selectively depleted (blue) genes (adjusted PÂ <Â 0.05), as well as dummy genes (green, generated by random combinations of 4 out of 1,000 non-targeting control sgRNAs per dummy gene). b, Venn diagram showing the overlap of genes between top-depleted genes in genome-scale CRISPR screening (by less than âˆ’3.5Â log2(TIL/inputÂ ratio); adjusted PÂ <Â 0.05) and top-upregulated genes in TIL Regnase-1-sgRNA- versus control-sgRNA-transduced OT-I cells as identified by RNA-seq (by greater than 1.5Â fold change (log2-transformedÂ ratio); adjusted PÂ <Â 0.05). c, Tn5 insert sites from ATAC-seq analysis were aligned to motifs for transcription factors from the TRANSFAC database, and the binding profiles of BATF are shown. d, Enrichment of BATF-binding motifs in the genomic regions with upregulated accessibility in REGNASE-1-null cells. First, we analysed common regions in our REGNASE-1-null ATAC-seq data and published BATF ChIP-seq peaks (GSE5419126). Next, we scanned these common regions with TRANSFAC motifs for BATF, and numbers of motif matches and associated Fisherâ€™s exact test PÂ values and log2(odds ratios) are shown (a positive log2(odds ratio) value indicates that a motif is more likely to occur in REGNASE-1-null cells than in wild-type samples; â€˜Eâˆ’xâ€™ denotes â€˜Â Ã—Â 10âˆ’xâ€™). e, Luciferase activity of HEK293T cells measured at 48Â h after transfection with Il2 mRNA 3â€² UTR (top) or Il4 mRNA 3â€² UTR (bottom) luciferase reporter plasmid, together with control (mock), wild-type REGNASE-1- or REGNASE-1(D141N)-expressing plasmid (nÂ =Â 3Â samples per group). f, OT-I cells transduced with control sgRNA (mCherry+; spike) were mixed at a 1:1 ratio with cells transduced with control sgRNA (ametrine+), Regnase-1 sgRNA (ametrine+), Batf sgRNA (GFP+) or Batf and Regnase-1 sgRNAs (GFP+ and ametrine+), and transferred into tumour-bearing hosts individually (nÂ =Â 4Â mice per group). Mice were analysed at 5 days after adoptive transfer for quantification of relative MFI of BATF normalized to spike in the tumour-infiltrating OT-I cells (f). g, Immunoblot analysis of REGNASE-1 and BATF expression in in vitro cultured OT-I cells 3 days after transduction with control sgRNA or Batf and Regnase-1 sgRNAs. HSP90 is used as a loading control. hâ€“k, The same transfer system as in f was used. Five days after adoptive transfer, mice were analysed for the quantification of relative OT-I cell percentage in CD8Î±+ cells normalized to spike in the spleen (h, left, nÂ =Â 4) and TILs (h, right, nÂ =Â 4). Tumour-infiltrating OT-I cells were analysed at dayÂ 5 (nÂ =Â 4Â mice per group) for the quantification of the relative frequency of activeÂ caspase-3+ cells normalized to spike (i), and the quantification of the relative frequency of TCF-1+ cells normalized to spike (j), or at dayÂ 7 (nÂ =Â 6Â mice per group) for quantification of the relative frequency of IFNÎ³+ cells normalized to spike (k). l, Four million pmel-1 cells transduced with Regnase-1 sgRNA (ametrine+) (nÂ =Â 10 recipients) or Batf and Regnase-1 sgRNAs (GFP+ and ametrine+) (nÂ =Â 10 recipients) were transferred into mice at dayÂ 12 after B16Â F10 melanoma engraftment, followed by analysis of tumour size. MeanÂ Â±Â s.d. (e). MeanÂ Â±Â s.e.m. (f, hâ€“k). *PÂ <Â 0.05, **PÂ <Â 0.01, ***PÂ <Â 0.001. Two-tailed unpaired Studentâ€™s paired t-test followed by Bonferroni correction (a), two-sided Fisherâ€™s exact test (d), one-way ANOVA (e, f, hâ€“k) or two-way ANOVA (l). Data are representative of two (e) or three (g) independent experiments, or pooled from two (f, hâ€“l) independent experiments.
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Extended Data Fig. 8 BATF overexpression markedly enhances CD8+ T cell antitumour responses.
a, OT-I cells were stimulated with anti-CD3 and anti-CD28 overnight before viral transduction, and then cultured in IL-7- and IL-15-containing medium for another 3Â days in vitro. Control-sgRNA- and Regnase-1-sgRNA-transduced OT-I cells were then stimulated with anti-CD3, IL-2 or IL-21 overnight for flow cytometry analysis of BATF expression (top), and quantification of the MFI of BATF (bottom) (nÂ =Â 6Â samples per group). Numbers in graphs indicate the MFI (top) and fold change between comparisons (bottom). bâ€“h, OT-I cells transduced with control retrovirus (RV;Â mCherry+) were mixed at a 1:1 ratio with cells transduced with Batf-overexpressing retrovirus (GFP+), and transferred into tumour-bearing hosts. Mice were analysed at dayÂ 4 (e) (nÂ =Â 4Â mice), dayÂ 5 (b, h) (nÂ =Â 4Â mice), dayÂ 7 (c, d, f, g) (nÂ =Â 6â€“8Â mice) or dayÂ 14 (c, d) (nÂ =Â 6Â mice) for the expression of BATF (b, left), activeÂ caspase-3 (f, left), IFNÎ³, GZMB, TNF and IL-2 (g, left) and TCF-1 (h, top) in TIL OT-I cells; the quantification of the MFI of BATF in TIL OT-I cells (b, right); quantification of the frequencies of activeÂ caspase-3+ cells (f, right), IFNÎ³+, GZMB+, TNF+ and IL-2+ cells (g, right) and TCF-1+ cells (h, bottom) in TIL OT-I cells; analysis of the proportion of donor-derived OT-I cells in total CD8Î±+ cells in TILs and spleen (c); the quantification of the relative OT-I cell percentage in CD8Î±+ cells in the spleenÂ (normalized to input) (d); the dilution of CellTrace Violet (CTV) in TIL OT-I cells (e, left); and the quantification of the MFI of CTV in TIL OT-I cells (e, right). The numbers in graphs indicate the MFI (b, left; e, left), the frequencies of OT-I cells in gates (c), the frequency of activeÂ caspase-3+ cells (f, left), the frequencies of IFNÎ³+, GZMB+, TNF+ or IL-2+ cells (g, left), and the frequency of TCF-1+ cells (h, top). MeanÂ Â±Â s.e.m. (a, b, dâ€“h). *PÂ <Â 0.05, **PÂ <Â 0.01, ***PÂ <Â 0.001. Two-tailed unpaired Studentâ€™s t-test (a, b, dâ€“h). Data are representative of two (a, c) independent experiments, or pooled from two (b, dâ€“h) independent experiments.
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Extended Data Fig. 9 Genome-scale CRISPR screening identifies mitochondrial metabolism as an important downstream pathway of REGNASE-1 and BATF.
a, Chromatin accessibility heat maps normalized by row (z-score) for 7,480Â genes with significantly increased chromatin accessibility (by |fold change (log2-transformed ratio)|Â >Â 0.5; PÂ <Â 0.05) in Regnase-1-sgRNA-transduced OT-I cells as compared to control-sgRNA-transduced cells. Specifically, OT-I cells transduced with control sgRNA (mCherry+) (nÂ =Â 4), Regnase-1 sgRNA (ametrine+) (nÂ =Â 4), Batf sgRNA (GFP+) (nÂ =Â 2) or Batf and Regnase-1 sgRNAs (GFP+ and ametrine+) (nÂ =Â 4) were transferred into tumour-bearing hosts individually. OT-I cells were isolated from TILs at dayÂ 7 for ATAC-seq analysis. We annotated the differential accessibility regions in ATAC-seq for the nearest genes, and identified 7,480Â genes with significantly increased chromatin accessibility in REGNASE-1-null cells as compared to wild-type cells. BATF co-deletion reversed the upregulated chromatin accessibility for a large proportion of these genes (5,052Â in total). Also, 2,527 of these 5,052Â genes showed significantly downregulated chromatin accessibility in BATF-null cells as compared to wild-type cells. b, Functional enrichment plots of the top-10 significantly (FDRÂ <Â 0.05) enriched pathways in top-ranking depleted genes (nÂ =Â 4Â sgRNAs for each gene) identified in the genome-scale CRISPR screening (by less than âˆ’3.5Â log2(TIL/inputÂ ratio); adjusted PÂ <Â 0.05). c, GSEA enrichment plots of TIL Regnase-1-sgRNA-transduced OT-I cells using the OXPHOS Hallmark gene set. Specifically, control-sgRNA- and Regnase-1-sgRNA-transduced OT-I cells were mixed and transferred into tumour-bearing mice, and tumour-infiltrating OT-I cells were isolated at dayÂ 7 for transcriptional profiling by RNA-seq. d, Representative images (top) and quantification of mitochondrial volume (stained with TOM20, white) per cell (bottom) in control-sgRNA- (mCherry+; red) and Regnase-1-sgRNA-transduced OT-I cells (ametrine+; green) in tumours at 7Â days after adoptive transfer (nÂ =Â 4Â mice). e, Oxygen consumption rate (OCR) bioenergetic profiling of control-sgRNA- and Regnase-1-sgRNA-transduced OT-I cells cultured in vitro for basal (left) and maximal (right) OCR (nÂ =Â 9Â samples per group). f, List of the top-2 significantly (FDRÂ <Â 0.05) upregulated and top-8 significantly downregulated pathways in TIL Batf-and-Regnase-1-sgRNAs- versus Regnase-1-sgRNA-transduced OT-I cellsÂ (n = 3 samples per group) isolated from TILs, as revealed by performing GSEA using the Hallmark gene sets. Specifically, Regnase-1-sgRNA- and Batf-and-Regnase-1-sgRNA-transduced OT-I cells were mixed and transferred into tumour-bearing mice, and tumour-infiltrating OT-I cells were isolated at dayÂ 7 for transcriptional profiling by microarray. g, GSEA enrichment plots of TIL Batf-and-Regnase-1-sgRNAs- versus Regnase-1-sgRNA-transduced OT-I cells (nÂ =Â 3Â samplesÂ per group) using the OXPHOS gene set. h, OT-I cells transduced with control sgRNA (mCherry+; spike) were mixed at a 1:1 ratio with cells transduced with control sgRNA (ametrine+), Regnase-1 sgRNA (ametrine+), Batf sgRNA (GFP+) or Batf and Regnase-1 sgRNA (GFP+ and ametrine+), and transferred into tumour-bearing hosts individually (nÂ =Â 4Â mice per group). Mice were analysed at 5Â days after adoptive transfer for quantification of the relative MFI of TMRM (left) and Mitotracker (right), normalized to spike in tumour-infiltrating OT-I cells. i, Chromatin accessibility heat maps normalized by row (z-score) for mitochondrial genes with significantly increased chromatin accessibility (by |fold change (log2-transformedÂ ratio)|Â >Â 0.5; PÂ <Â 0.05) in Regnase-1-sgRNA-transduced OT-I cells compared to control-sgRNA-transduced cells, determined by ATAC-seq as described in a. We annotated the differential accessibility regions in ATAC-seq for the nearest genes, and superimposed these genes with 1,158Â mitochondrial genes defined in the MitoCarta 2.0 database. A total of 341Â mitochondrial genes showed significantly upregulated chromatin accessibility in the absence of REGNASE-1, 214Â of which were blocked by BATF co-deletion in BATF-nullÂ REGNASE-1-null cells. Moreover, 96 of these 214Â genes showed significantly downregulated chromatin accessibility in BATF-null cells as compared to wild-type cells. MeanÂ Â±Â s.e.m. (d, e, h). *PÂ <Â 0.05, **PÂ <Â 0.01, ***PÂ <Â 0.001. Two-sided Fisherâ€™s exact test (a, i), right-tailed Fisherâ€™s exact test (b), Kolmogorovâ€“Smirnov test followed by Benjaminiâ€“Hochberg correction (c, f, g), two-tailed unpaired Studentâ€™s t-test (d, e) or one-way ANOVA (h). Data are representative of two (d, e) independent experiments, or pooled from two (h) independent experiments.
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Extended Data Fig. 10 Targeting PTPN2 and SOCS1 and model of REGNASE-1 functions in tumour-specific CD8+ T cells.
a, Immunoblot analysis of REGNASE-1, PTPN2 and SOCS1 expression in OT-I cells cultured in vitro, 3Â days after transduction with control sgRNA, Ptpn2 and Regnase-1 sgRNAs (left) or Socs1 and Regnase-1 sgRNAs (right). HSP90 is used as a loading control. b, Immunoblot analysis of REGNASE-1, BATF, SOCS1 and PTPN2 expression in OT-I cells transduced with control sgRNA or Regnase-1 sgRNA, cultured in vitro for 3Â days after viral transduction. Î²-Actin is used as a loading control. c, REGNASE-1 is a major negative regulator of CD8+ T cell antitumour responses, and TCR and IL-2 inhibit its expression and activity. Deletion of REGNASE-1 unleashes a potent therapeutic efficacy of engineered tumour-specific CD8+ T cells against cancers, by coordinating transcriptional and metabolic programs to achieve greatly improved cell accumulation and function. As a key functional target of REGNASE-1, excessive BATF drives robust cell accumulation and effector functionâ€”in part through enhancing mitochondrial metabolismâ€”in REGNASE-1-null CD8+ T cells. REGNASE-1 deletion also reprograms cells to acquire increased gene signatures associated with naive or memory cells and to gain survival advantage, which contribute to the improved persistence of REGNASE-1-null effector CD8+ T cells. Targeting PTPN2 and SOCS1 (not depicted here) acts in coordination with REGNASE-1 inhibition to promote CD8+ T cell antitumour responses. Data are representative of three independent experiments (a, b).
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Supplementary Figure 1: Source western blot images. This file contains uncropped western blot scans with size marker indications.
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Supplementary Table 1 Mouse sgRNA metabolic library. This file contains all sgRNAs in the mouse sgRNA metabolic sub-libraries in two tabs, AAAQ05 and AAAR07. Each sub-library consists of 9,051 sgRNAs targeting 3,017 cell metabolism-related genes (3 sgRNAs per gene per sub-library) encoding metabolic enzymes, small molecule transporters, and metabolism-related transcriptional regulators, as well as 500 non-targeting control sgRNAs. The first column lists the sgRNA sequence, the second column is the sgRNA target gene ID and the third column lists the sgRNA target gene symbol.
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Supplementary Table 2 Analysis of mouse sgRNA metabolic library CRISPR screening data. This file contains the output of the analysis of mouse metabolic library CRISPR screening data in both gene level and sgRNA level in two separate tabs. For data analysis, FastQ files obtained after sequencing were demultiplexed using the HiSeq Analysis software (Illumina). Single-end reads were trimmed and quality-filtered using the CLC Genomics Workbench v11 (Qiagen) and matched against sgRNA sequences from the sgRNA metabolic library. Read counts for sgRNAs were normalized against total read counts across all samples. For each sgRNA, the fold change (log2-transformedÂ ratio) for enrichment was calculated between each of the biological replicates and the input experiment. After merging the quantification results from two sub-libraries, candidate genes were ranked based on the average enrichment of their six gene-specific sgRNAs in tumour-infiltrating OT-I cells relative to input (log2(TIL/input ratio); adjusted P < 0.05). The gene level false discovery rate-adjusted PÂ value was calculated among multiple sgRNAs (n = 6) of each gene, using a two-tailed paired Studentâ€™s t-test between log2-transformed average normalized read counts of tumor samples and those of input samples, and the PÂ value was further adjusted using Bonferroni correction with gene size.
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Supplementary Table 3 Analysis of mouse Brie sgRNA genome-scale library CRISPR screening data. This file contains the output of the analysis of mouse Brie genome-scale library CRISPR screening data in both gene level and sgRNA level in two separate tabs. For data analysis, FastQ files obtained after sequencing were demultiplexed using the HiSeq Analysis software (Illumina). Regnase-1 sgRNA (GGAGTGGAAACGCTTCATCG) reads were removed, and single-end reads were trimmed and quality-filtered using the CLC Genomics Workbench v11 (Qiagen) and matched against sgRNA sequences from the genome-scale sgRNA Brie library. Read counts for sgRNAs were normalized against total read counts across all samples. For each sgRNA, the fold change (log2-transformedÂ ratio) for enrichment was calculated between each of the biological replicates and the input experiment. Gene ranking was based on the average enrichment (log2(TIL/input ratio)) among replicates in representation of four individual corresponding sgRNAs in the genome-scale sgRNA Brie library. The gene level false discovery rate-adjusted PÂ value was calculated among multiple sgRNAs (n = 4) of each gene, using a two-tailed paired Studentâ€™s t-test between log2-transformed average normalized read counts of tumor samples and those of input samples, and the PÂ value was further adjusted using Bonferroni correction with gene size.
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