Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global satellite-observed daily vertical migrations of ocean animals


Every night across the world’s oceans, numerous marine animals arrive at the surface of the ocean to feed on plankton after an upward migration of hundreds of metres. Just before sunrise, this migration is reversed and the animals return to their daytime residence in the dark mesopelagic zone (at a depth of 200–1,000 m). This daily excursion, referred to as diel vertical migration (DVM), is thought of primarily as an adaptation to avoid visual predators in the sunlit surface layer1,2 and was first recorded using ship-net hauls nearly 200 years ago3. Nowadays, DVMs are routinely recorded by ship-mounted acoustic systems (for example, acoustic Doppler current profilers). These data show that night-time arrival and departure times are highly conserved across ocean regions4 and that daytime descent depths increase with water clarity4,5, indicating that animals have faster swimming speeds in clearer waters4. However, after decades of acoustic measurements, vast ocean areas remain unsampled and places for which data are available typically provide information for only a few months, resulting in an incomplete understanding of DVMs. Addressing this issue is important, because DVMs have a crucial role in global ocean biogeochemistry. Night-time feeding at the surface and daytime metabolism of this food at depth provide an efficient pathway for carbon and nutrient export6,7,8. Here we use observations from a satellite-mounted light-detection-and-ranging (lidar) instrument to describe global distributions of an optical signal from DVM animals that arrive in the surface ocean at night. Our findings reveal that these animals generally constitute a greater fraction of total plankton abundance in the clear subtropical gyres, consistent with the idea that the avoidance of visual predators is an important life strategy in these regions. Total DVM biomass, on the other hand, is higher in more productive regions in which the availability of food is increased. Furthermore, the 10-year satellite record reveals significant temporal trends in DVM biomass and correlated variations in DVM biomass and surface productivity. These results provide a detailed view of DVM activities globally and a path for refining the quantification of their biogeochemical importance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Marine animal and phytoplankton influences on day-to-night changes in particulate backscattering coefficients and the biomass-normalized difference ratio.
Fig. 2: Global climatological signal of vertically migrating animals quantified as the normalized difference ratio.
Fig. 3: Comparison of CALIOP normalized difference ratios and field-based DVM measurements in the PSO.
Fig. 4: CALIOP-based estimates of vertically migrating animal biomass (DVMCALIOP) and temporal changes.

Similar content being viewed by others

Data availability

The CALIOP lidar and field ADCP datasets analysed during the current study are available at and from the Joint Archive for Shipboard ADCP at Source Data for Figs. 3b–d, 4b and Extended Data Figs. 3, 68 are provided with the paper.


  1. Lampert, W. The adaptive significance of diel vertical migration of zooplankton. Funct. Ecol. 3, 21–27 (1989).

    Article  Google Scholar 

  2. Hays, G. C. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503, 163–170 (2003).

    Article  Google Scholar 

  3. Cuvier, G. Le Règne Animal distribué d’après son Organisation pour à l’Histoire Naturelle des Animaux et d’Introduction à l’Anatomie Compare (Deterville, 1829).

  4. Bianchi, D. & Mislan, K. A. S. Global patterns of diel vertical migration times and velocities from acoustics data. Limnol. Oceanogr. 61, 353–364 (2016).

    Article  ADS  Google Scholar 

  5. Røstad, A., Kaartvedt, S. & Aksnes, D. L. Light comfort zones of mesopelagic acoustic scattering layers in two contrasting optical environments. Deep Sea Res. Part I Oceanogr. Res. Pap. 113, 1–6 (2016).

    Article  ADS  Google Scholar 

  6. Steinberg, D. K., Goldthwait, S. A. & Hansell, D. A. Zooplankton vertical migration and the active transport of dissolved organic and inorganic nitrogen in the Sargasso Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 49, 1445–1461 (2002).

    Article  ADS  CAS  Google Scholar 

  7. Bianchi, D., Stock, C., Galbraith, E. D. & Sarmiento, J. L. Diel vertical migration: ecological controls and impacts on the biological pump in a one-dimensional ocean model. Glob. Biogeochem. Cycles 27, 478–491 (2013).

    Article  ADS  CAS  Google Scholar 

  8. Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).

    Article  Google Scholar 

  9. Churnside, J. H., Wilson, J. J. & Tatarskii, V. V. Lidar profiles of fish schools. Appl. Opt. 36, 6011–6020 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Churnside, J. H. & Thorne, R. E. Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton. Appl. Opt. 44, 5504–5511 (2005).

    Article  ADS  Google Scholar 

  11. Hostetler, C. A., Behrenfeld, M. J., Hu, Y., Hair, J. W. & Schulien, J. A. Spaceborne lidar in the study of marine systems. Ann. Rev. Mar. Sci. 10, 121–147 (2018).

    Article  Google Scholar 

  12. Burt, W. J. & Tortell, P. D. Observations of zooplankton diel vertical migration from high-resolution surface ocean optical measurements. Geophys. Res. Lett. 45, 396–13,404 (2018).

    Article  Google Scholar 

  13. Briggs, N. T., Slade, W. H., Boss, E. & Perry, M. J. Method for estimating mean particle size from high-frequency fluctuations in beam attenuation or scattering measurements. Appl. Opt. 52, 6710–6725 (2013).

    Article  ADS  Google Scholar 

  14. Behrenfeld, M. J. et al. Space-based lidar measurements of global ocean carbon stocks. Geophys. Res. Lett. 40, 4355–4360 (2013).

    Article  ADS  CAS  Google Scholar 

  15. Behrenfeld, M. J. et al. Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar. Nat. Geosci. 10, 118–122 (2017).

    Article  ADS  CAS  Google Scholar 

  16. Stramski, D., Shalapyonok, A. & Reynolds, R. A. Optical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day–night cycle in natural irradiance. J. Geophys. Res. Oceans 100, 13295–13307 (1995).

    Article  ADS  Google Scholar 

  17. DuRand, M. D., Green, R. E., Sosik, H. M. & Olson, R. J. Diel variations in optical properties of Micromonas pusilla (Prasinophyceae). J. Phycol. 38, 1132–1142 (2002).

    Article  Google Scholar 

  18. Dall’Olmo, G. et al. Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient. Biogeosciences 8, 3423–3439 (2011).

    Article  ADS  Google Scholar 

  19. Kheireddine, M. & Antoine, D. Diel variability of the beam attenuation and backscattering coefficients in the northwestern Mediterranean Sea (BOUSSOLE site). J. Geophys. Res. Oceans 119, 5465–5482 (2014).

    Article  ADS  Google Scholar 

  20. Ohman, M. D., Frost, B. W. & Cohen, E. B. Reverse diel vertical migration: an escape from invertebrate predators. Science 220, 1404–1407 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Hannides, C. C. S. et al. Export stoichiometry and migrant-mediated flux of phosphorus in the North Pacific Subtropical Gyre. Deep Sea Res. Part I Oceanogr. Res. Pap. 56, 73–88 (2009).

    Article  ADS  Google Scholar 

  22. Steinberg, D. K., Lomas, M. W. & Cope, J. S. Long-term increase in mesozooplankton biomass in the Sargasso Sea: linkage to climate and implications for food web dynamics and biogeochemical cycling. Glob. Biogeochem. Cycles 26, GB1004 (2012).

    Article  ADS  Google Scholar 

  23. Richardson, A. J. In hot water: zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295 (2008).

    Article  Google Scholar 

  24. Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).

    Article  ADS  CAS  Google Scholar 

  25. Piontkovski, S. A. & Castellani, C. Long-term declining trend of zooplankton biomass in the Tropical Atlantic. Hydrobiologia 632, 365–370 (2009).

    Article  Google Scholar 

  26. Peterson, W. T. & Schwing, F. B. A new climate regime in northeast Pacific ecosystems. Geophys. Res. Lett. 30, 1896 (2003).

    Article  ADS  Google Scholar 

  27. Chiba, S., Tadokoro, K., Sugisaki, H. & Saino, T. Effects of decadal climate change on zooplankton over the last 50 years in the western subarctic North Pacific. Glob. Change Biol. 12, 907–920 (2006).

    Article  ADS  Google Scholar 

  28. Archibald, K., Siegel, D. A. & Doney, S. C. Modeling the impact of zooplankton diel vertical migration on the carbon export flux of the biological pump. Glob. Biogeochem. Cycles 33, 181–199 (2019).

    Article  ADS  CAS  Google Scholar 

  29. Behrenfeld, M. J., Boss, E., Siegel, D. A. & Shea, D. M. Carbon-based ocean productivity and phytoplankton physiology from space. Glob. Biogeochem. Cycles 19, GB1006 (2005).

    Article  ADS  Google Scholar 

  30. Siegel, D. A. et al. Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens. Environ. 135, 77–91 (2013).

    Article  ADS  Google Scholar 

  31. Winker, D. M. et al. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 26, 2310–2323 (2009).

    Article  ADS  Google Scholar 

  32. Behrenfeld, M. J. et al. The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): science motive and mission overview. Front. Mar. Sci. 6, 122 (2019).

    Article  Google Scholar 

  33. Lu, X. et al. Retrieval of ocean subsurface particulate backscattering coefficient from space-borne CALIOP lidar measurements. Opt. Express 24, 29001–29008 (2016).

    Article  ADS  CAS  Google Scholar 

  34. DuRand, M. D. & Olson, R. J. Diel patterns in optical properties of the chlorophyte Nannochloris sp.: relating individual-cell to bulk measurements. Limnol. Oceanogr. 43, 1107–1118 (1998).

    Article  ADS  Google Scholar 

  35. Vaulot, D., Marie, D., Olson, R. J. & Chisholm, S. W. Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean. Science 268, 1480–1482 (1995).

    CAS  PubMed  Google Scholar 

  36. André, J. M., Navarette, C., Blanchot, J. & Radenac, M. H. Picophytoplankton dynamics in the equatorial Pacific: growth and grazing rates from cytometric counts. J. Geophys. Res. 104, 3369–3380 (1999).

    Article  ADS  Google Scholar 

  37. Vaulot, D. & Marie, D. Diel variability of photosynthetic picoplankton in the equatorial Pacific. J. Geophys. Res. Oceans 104, 3297–3310 (1999).

    Article  ADS  CAS  Google Scholar 

  38. Binder, B. J. & DuRand, M. D. Diel cycles in surface waters of the equatorial Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 2601–2617 (2002).

    Article  ADS  Google Scholar 

  39. Jacquet, S., Prieur, L., Avois-Jacquet, C., Lennon, J. F. & Vaulot, D. Short-timescale variability of picophytoplankton abundance and cellular parameters in surface waters of the Alboran Sea (western Mediterranean). J. Plankton Res. 24, 635–651 (2002).

    Article  CAS  Google Scholar 

  40. Gostiaux, L. & van Haren, H. Extracting meaningful information from uncalibrated backscattered echo intensity data. J. Atmos. Ocean. Technol. 27, 943–949 (2010).

    Article  ADS  Google Scholar 

  41. Westberry, T. K., Behrenfeld, M. J., Siegel, D. A. & Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob. Biogeochem. Cycles 22, GB2024 (2008).

    Article  ADS  Google Scholar 

Download references


This work was supported by the National Aeronautics and Space Administration’s North Atlantic Aerosol and Marine Ecosystems Study (NAAMES) and EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) study. A.D.P. was supported by the Applied Physics Laboratory Science and Engineering Enrichment Development (SEED) fellowship. This project received funding from the European Union’s Horizon 2020 research and innovation program under Marie Sklodowska-Curie grant agreement number 749591.

Author information

Authors and Affiliations



M.J.B. designed the study. M.J.B., P.G., A.D.P., W.J.B., Y.H. and R.T.O. processed data and analysed results. M.J.B., P.G., A.D.P. and R.T.O. prepared display items. M.J.B. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Michael J. Behrenfeld.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Daniele Bianchi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Fig. 1 Global CALIOP observational coverage.

ae, CALIOP ground tracks for 1 (a), 2 (b), 4 (c), 8 (d) and 16 (e) days. f, Number of months for each 2° × 2° bin with day and night retrievals of bbp for the 2008–2017 study period. The total number of months possible is 115. The north–south strip of low retrieval success in the middle of the Pacific is caused by a gap in ancillary AMSER surface wind data. AMSER wind data are used for flagging CALIOP data with potential bubble contamination (Methods).

Extended Data Fig. 2 Global distributions of monthly climatological mean values of ∆bbp.

Thin black line, contour of monthly mean sea surface temperature of 15 °C. Thick black lines, monthly extent of the 5 subtropical gyres in which annual mean surface chlorophyll concentrations are ≤0.08 mg m−3.

Extended Data Fig. 3 Time series of ∆bbp for the PSO.

ah, The 2008–2017 monthly values of ∆bbp (%) for the eight PSO regions described in Fig. 3a.

Souce data

Extended Data Fig. 4 Global coverage of field ADCP data.

Number of days within each 5° × 5° bin for which paired day–night ADCP data are available from the 1985–2017 JASADCP-based field archive ( The total number of days possible is 11,680. White bins, no data. Yellow/black line, contour of annual mean sea surface temperature of 15 °C. Thick white lines, boundaries of the eight PSO regions described in Fig. 3a.

Extended Data Fig. 5 Influence of phytoplankton division rate and of day length on calculated DVM backscatter for the PSO.

a, Values for c1 (equation (6)) over the range of phytoplankton division rates (µ) in the PSO (n = 999 monthly µ values for all PSO regions). Solid circle, mean value of µ and c1 for the PSO. The box shows ±1 s.d. of the mean of µ and the solid line shows values of c1 over the full range in µ for the PSO. b, Values for c2 (equation (7)) over the range of day lengths in the PSO (n = 999 monthly day length values for all PSO regions). Solid circle, mean day length and c2 value for the PSO. The box shows ±1 s.d. of the mean day length and the solid line shows values of c2 over the full range in day length for the PSO.

Extended Data Fig. 6 Seasonal cycles in monthly mean regionally integrated values of DVMCALIOP and phytoplankton biomass for high-latitude regions.

a, North Pacific. b, North Atlantic. c, Southern Ocean. These three regions are described in Fig. 4c. Vertical lines show ±1 s.d. (n = 111 monthly DVMCALIOP (g m−2) and Cphyto (mg C m−3) values for each region). Cphyto data are from the carbon-based production model (CbPM) and MODIS passive ocean-colour data (Methods).

Source data

Extended Data Fig. 7 Comparison of CALIOP night–day bbp differences and field ADCP night–day differences in acoustic backscatter.

Dashed line, two-sided least-squares linear regression fit to data for the SPSG, NPSG, TP, STA, NASG and NTA (n = 6). For completeness, the mean value for PSO bins outside our eight primary regions is indicated by the white symbol. Symbols, regional mean ±s.e.m. (SISG, n = 19; SASG, n = 18; TP, n = 115; NASG, n = 16; NTA, n = 23; NPSG, n = 59; STA, n = 22; SPSG, n = 59; other, n = 302). Symbol colours identify region (labelled on the right) and correspond to the colours shown in Fig. 3a. Numbers next to each symbol indicate the median number of days with ADCP data within the 32-year field record for the 5°× 5° bins.

Source data

Extended Data Fig. 8 Bin-to-bin comparison of CALIOP ∆bbp and field-based DVM measurements in the PSO.

a, CALIOP normalized difference ratios (∆bbp) versus field ADCP (∆BADCP) normalized difference ratios for 5° × 5° bins within the PSO. Black line, two-sided least-squares linear regression fit (F–test P value for slope; P < 0.001; n = 331 independent geographical bins) for all data from our eight primary PSO regions (coloured symbols are labelled on the right). White symbols, PSO values for 5° × 5° bins outside of the 8 primary regions. Inclusion of these data in the linear regression analysis increases the F-test value to P = 0.005 (n = 633 independent geographical bins). b, Relationship between field DVM biomass at the HOT site measured for a given calendar month and year (x axis) versus DVM biomass measured during all other years for the same calendar month (y axis).

Source data

Extended Data Fig. 9 Field-based diel cycles in bbp.

Mean diel cycles in bbp from a previous study19 for mixing (blue line; n = 69 days of measurements), oligotrophy (green line; n = 322 days of measurements) and declining (red line; n = 32 days of measurements) conditions and the mean of these three cycles (black line), which corresponds to the diel cycle in Fig. 1b.

Supplementary information

Supplementary Discussion

The Supplementary Discussion provides additional information regarding: (1) CALIOP orbits and data binning, (2) high-latitude spatial variability in CALIOP retrievals, (3) normalized difference ratio data and results in figure 3 of the main manuscript, (4) calculation of the phytoplankton diel bbp cycle, (5) additional details on calculations of DVM biomass, and (6) directions for future research.

Reporting Summary

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behrenfeld, M.J., Gaube, P., Della Penna, A. et al. Global satellite-observed daily vertical migrations of ocean animals. Nature 576, 257–261 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing