Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Accretion of a giant planet onto a white dwarf star


The detection1 of a dust disk around the white dwarf star G29-38 and transits from debris orbiting the white dwarf WD 1145+017 (ref. 2) confirmed that the photospheric trace metals found in many white dwarfs3 arise from the accretion of tidally disrupted planetesimals4. The composition of these planetesimals is similar to that of rocky bodies in the inner Solar System5. Gravitational scattering of planetesimals towards the white dwarf requires the presence of more massive bodies6, yet no planet has so far been detected at a white dwarf. Here we report optical spectroscopy of a hot (about 27,750 kelvin) white dwarf, WD J091405.30+191412.25, that is accreting from a circumstellar gaseous disk composed of hydrogen, oxygen and sulfur at a rate of about 3.3 × 109 grams per second. The composition of this disk is unlike all other known planetary debris around white dwarfs7, but resembles predictions for the makeup of deeper atmospheric layers of icy giant planets, with H2O and H2S being major constituents. A giant planet orbiting a hot white dwarf with a semi-major axis of around 15 solar radii will undergo substantial evaporation with expected mass loss rates comparable to the accretion rate that we observe onto the white dwarf. The orbit of the planet is most probably the result of gravitational interactions, indicating the presence of additional planets in the system. We infer an occurrence rate of approximately 1 in 10,000 for spectroscopically detectable giant planets in close orbits around white dwarfs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Emission lines from the circumstellar disk at WD J0914+1914.
Fig. 2: Photospheric oxygen and sulfur lines.
Fig. 3: Abundances of the planetary material at WD J0914+1914.

Data availability

The SDSS and X-Shooter spectra analysed in this paper are available from the SDSS ( and ESO ( archives.

Code availability

Cloudy is publicly available ( The model atmosphere code of D. Koester is subject to restricted availability.


  1. 1.

    Zuckerman, B. & Becklin, E. E. Excess infrared radiation from a white dwarf—an orbiting brown dwarf? Nature 330, 138–140 (1987).

    ADS  Google Scholar 

  2. 2.

    Vanderburg, A. et al. A disintegrating minor planet transiting a white dwarf. Nature 526, 546–549 (2015).

    ADS  CAS  Google Scholar 

  3. 3.

    Koester, D., Gänsicke, B. T. & Farihi, J. The frequency of planetary debris around young white dwarfs. Astron. Astrophys. 566, A34 (2014).

    ADS  Google Scholar 

  4. 4.

    Jura, M. A tidally disrupted asteroid around the white dwarf G29–38. Astrophys. J. 584, L91–L94 (2003).

    ADS  Google Scholar 

  5. 5.

    Zuckerman, B., Koester, D., Melis, C., Hansen, B. M. & Jura, M. The chemical composition of an extrasolar minor planet. Astrophys. J. 671, 872–877 (2007).

    ADS  CAS  Google Scholar 

  6. 6.

    Frewen, S. F. N. & Hansen, B. M. S. Eccentric planets and stellar evolution as a cause of polluted white dwarfs. Mon. Not. R. Astron. Soc. 439, 2442–2458 (2014).

    ADS  Google Scholar 

  7. 7.

    Xu, S. et al. The chemical composition of an extrasolar Kuiper Belt Object. Astrophys. J. 836, L7 (2017).

    ADS  Google Scholar 

  8. 8.

    Gentile Fusillo, N. P., Gänsicke, B. T. & Greiss, S. A photometric selection of white dwarf candidates in Sloan Digital Sky Survey Data Release 10. Mon. Not. R. Astron. Soc. 448, 2260–2274 (2015).

    ADS  Google Scholar 

  9. 9.

    Horne, K. & Marsh, T. R. Emission line formation in accretion discs. Mon. Not. R. Astron. Soc. 218, 761–773 (1986).

    ADS  CAS  Google Scholar 

  10. 10.

    Gänsicke, B. T., Marsh, T. R., Southworth, J. & Rebassa-Mansergas, A. A gaseous metal disk around a white dwarf. Science 314, 1908–1910 (2006).

    ADS  PubMed  Google Scholar 

  11. 11.

    Melis, C. et al. Gaseous material orbiting the polluted, dusty white dwarf HE 1349–2305. Astrophys. J. Lett. 751, 4 (2012).

    ADS  Google Scholar 

  12. 12.

    Bauer, E. B. & Bildsten, L. Polluted white dwarfs: mixing regions and diffusion timescales. Astrophys. J. 872, 96 (2019).

    ADS  CAS  Google Scholar 

  13. 13.

    Ferland, G. J. et al. The 2017 release Cloudy. Rev. Mex. Astron. Astrofis. 53, 385–438 (2017).

    ADS  CAS  Google Scholar 

  14. 14.

    Pyrzas, S. et al. Post-common envelope binaries from SDSS. XV. Accurate stellar parameters for a cool 0.4 M white dwarf and a 0.16 M M dwarf in a 3 h eclipsing binary. Mon. Not. R. Astron. Soc. 419, 817–826 (2012).

    ADS  Google Scholar 

  15. 15.

    Davidsson, B. J. R. Tidal splitting and rotational breakup of solid spheres. Icarus 142, 525–535 (1999).

    ADS  Google Scholar 

  16. 16.

    Gänsicke, B. T. et al. The chemical diversity of exo-terrestrial planetary debris around white dwarfs. Mon. Not. R. Astron. Soc. 424, 333–347 (2012).

    ADS  Google Scholar 

  17. 17.

    de Pater, I., Romani, P. N. & Atreya, S. K. Uranus deep atmosphere revealed. Icarus 82, 288–313 (1989).

    ADS  Google Scholar 

  18. 18.

    Irwin, P. G. J. et al. Detection of hydrogen sulfide above the clouds in Uranus’s atmosphere. Nat. Astron. 2, 420–427 (2018).

    ADS  Google Scholar 

  19. 19.

    Irwin, P. G. J. et al. Probable detection of hydrogen sulphide (H2S) in Neptune’s atmosphere. Icarus 321, 550–563 (2019).

    ADS  CAS  Google Scholar 

  20. 20.

    Ehrenreich, D. et al. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b. Nature 522, 459–461 (2015).

    ADS  CAS  PubMed  Google Scholar 

  21. 21.

    Bourrier, V. et al. Hubble PanCET: an extended upper atmosphere of neutral hydrogen around the warm Neptune GJ 3470b. Astron. Astrophys. 620, A147 (2018).

    CAS  Google Scholar 

  22. 22.

    Tu, L., Johnstone, C. P., Güdel, M. & Lammer, H. The extreme ultraviolet and X-ray sun in time: high-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577, L3 (2015).

    ADS  Google Scholar 

  23. 23.

    Hartman, J. D. et al. HAT-P-26b: a low-density Neptune-mass planet transiting a K star. Astrophys. J. 728, 138 (2011).

    ADS  Google Scholar 

  24. 24.

    Wakeford, H. R. et al. HAT-P-26b: a Neptune-mass exoplanet with a well-constrained heavy element abundance. Science 356, 628–631 (2017).

    ADS  CAS  PubMed  Google Scholar 

  25. 25.

    Nelemans, G. & Tauris, T. M. Formation of undermassive single white dwarfs and the influence of planets on late stellar evolution. Astron. Astrophys. 335, L85–L88 (1998).

    ADS  Google Scholar 

  26. 26.

    Mustill, A. J., Villaver, E., Veras, D., Gänsicke, B. T. & Bonsor, A. Unstable low-mass planetary systems as drivers of white dwarf pollution. Mon. Not. R. Astron. Soc. 476, 3939–3955 (2018).

    ADS  Google Scholar 

  27. 27.

    Gentile Fusillo, N. P. et al. A Gaia Data Release 2 catalogue of white dwarfs and a comparison with SDSS. Mon. Not. R. Astron. Soc. 482, 4570–4591 (2019).

    ADS  Google Scholar 

  28. 28.

    Manser, C. J. et al. Doppler imaging of the planetary debris disc at the white dwarf SDSS J122859.93+104032.9. Mon. Not. R. Astron. Soc. 455, 4467–4478 (2016).

    ADS  CAS  Google Scholar 

  29. 29.

    McDonough, W. The composition of the Earth. In Earthquake Thermodynamics and Phase Transformation in the Earth’s Interior (eds Teisseyre, R. & Majewski, E.) 5–24 (Elsevier Science Academic Press, 2000).

  30. 30.

    Abazajian, K. N. et al. The Seventh Data Release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. 182, 543–558 (2009).

    ADS  Google Scholar 

  31. 31.

    Abolfathi, B. et al. The Fourteenth Data Release of the Sloan Digital Sky Survey: first spectroscopic data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment. Astrophys. J. Suppl. 235, 42 (2018).

    ADS  Google Scholar 

  32. 32.

    Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 536, A105 (2011).

    Google Scholar 

  33. 33.

    Freudling, W. et al. Automated data reduction workflows for astronomy. The ESO Reflex environment. Astron. Astrophys. 559, A96 (2013).

    Google Scholar 

  34. 34.

    Smak, J. On the emission lines from rotating gaseous disks. Acta Astron. 31, 395–408 (1981).

    ADS  CAS  Google Scholar 

  35. 35.

    Koester, D. White dwarf spectra and atmosphere models. Mem. Soc. Astron. Ital. 81, 921–931 (2010).

    ADS  CAS  Google Scholar 

  36. 36.

    Bergeron, P., Saffer, R. A. & Liebert, J. A spectroscopic determination of the mass distribution of DA white dwarfs. Astrophys. J. 394, 228–247 (1992).

    ADS  Google Scholar 

  37. 37.

    Homeier, D. et al. An analysis of DA white dwarfs from the Hamburg quasar survey. Astron. Astrophys. 338, 563–575 (1998).

    ADS  Google Scholar 

  38. 38.

    Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    ADS  Google Scholar 

  39. 39.

    Bergeron, P., Fontaine, G., Tremblay, P.-E. & Kowalski, P. M. Synthetic colors and evolutionary sequences of hydrogen- and helium-atmosphere white dwarfs (2016).

  40. 40.

    Holberg, J. B. & Bergeron, P. Calibration of synthetic photometry using DA white dwarfs. Astron. J. 132, 1221–1233 (2006).

    ADS  CAS  Google Scholar 

  41. 41.

    Kowalski, P. M. & Saumon, D. Found: the missing blue opacity in atmosphere models of cool hydrogen white dwarfs. Astrophys. J. Lett. 651, 137–140 (2006).

    ADS  CAS  Google Scholar 

  42. 42.

    Tremblay, P.-E., Bergeron, P. & Gianninas, A. An improved spectroscopic analysis of DA white dwarfs from the Sloan Digital Sky Survey Data Release 4. Astrophys. J. 730, 128 (2011).

    ADS  Google Scholar 

  43. 43.

    Tremblay, P.-E. et al. Core crystallization and pile-up in the cooling sequence of evolving white dwarfs. Nature 565, 202–205 (2019).

    ADS  CAS  PubMed  Google Scholar 

  44. 44.

    Genest-Beaulieu, C. & Bergeron, P. A comprehensive spectroscopic and photometric analysis of DA and DB white dwarfs from SDSS and Gaia. Astrophys. J. 871, 169 (2019).

    ADS  CAS  Google Scholar 

  45. 45.

    Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G. & Andrae, R. Estimating distance from parallaxes. IV. Distances to 1.33 billion stars in Gaia Data Release 2. Astron. J. 156, 58 (2018).

    ADS  Google Scholar 

  46. 46.

    Bianchi, L. et al. Catalogues of hot white dwarfs in the Milky Way from GALEX’s ultraviolet sky surveys: constraining stellar evolution. Mon. Not. R. Astron. Soc. 411, 2770–2791 (2011).

    ADS  Google Scholar 

  47. 47.

    Cummings, J. D., Kalirai, J. S., Tremblay, P.-E., Ramirez-Ruiz, E. & Choi, J. The white dwarf initial-final mass relation for progenitor stars from 0.85 to 7.5 M. Astrophys. J. 866, 21 (2018).

    ADS  Google Scholar 

  48. 48.

    Kalirai, J. S. et al. The initial-final mass relation: direct constraints at the low-mass end. Astrophys. J. 676, 594–609 (2008).

    ADS  CAS  Google Scholar 

  49. 49.

    Weidemann, V. Revision of the initial-to-final mass relation. Astron. Astrophys. 363, 647–656 (2000).

    ADS  CAS  Google Scholar 

  50. 50.

    Catalán, S. et al. The initial-final mass relationship from white dwarfs in common proper motion pairs. Astron. Astrophys. 477, 213–221 (2008).

    ADS  Google Scholar 

  51. 51.

    Casewell, S. L. et al. High-resolution optical spectroscopy of Praesepe white dwarfs. Mon. Not. R. Astron. Soc. 395, 1795–1804 (2009).

    ADS  CAS  Google Scholar 

  52. 52.

    Williams, K. A., Bolte, M. & Koester, D. Probing the lower mass limit for supernova progenitors and the high-mass end of the initial-final mass relation from white dwarfs in the open cluster M35 (NGC 2168). Astrophys. J. 693, 355–369 (2009).

    ADS  CAS  Google Scholar 

  53. 53.

    Hinkel, N. R., Timmes, F. X., Young, P. A., Pagano, M. D. & Turnbull, M. C. Stellar abundances in the solar neighborhood: the Hypatia Catalog. Astron. J. 148, 54 (2014).

    ADS  Google Scholar 

  54. 54.

    Chayer, P. et al. Improved calculations of the equilibrium abundances of heavy elements supported by radiative levitation in the atmospheres of hot DA white dwarfs. Astrophys. J. 454, 429–441 (1995).

    ADS  CAS  Google Scholar 

  55. 55.

    Deal, M., Deheuvels, S., Vauclair, G., Vauclair, S. & Wachlin, F. C. Accretion from debris disks onto white dwarfs. Fingering (thermohaline) instability and derived accretion rates. Astron. Astrophys. 557, L12 (2013).

    ADS  Google Scholar 

  56. 56.

    Bauer, E. B. & Bildsten, L. Increases to inferred rates of planetesimal accretion due to thermohaline mixing in metal-accreting white dwarfs. Astrophys. J. Lett. 859, 19 (2018).

    ADS  Google Scholar 

  57. 57.

    Hartmann, S., Nagel, T., Rauch, T. & Werner, K. Non-LTE models for the gaseous metal component of circumstellar discs around white dwarfs. Astron. Astrophys. 530, A7 (2011).

    ADS  Google Scholar 

  58. 58.

    Melis, C., Jura, M., Albert, L., Klein, B. & Zuckerman, B. Echoes of a decaying planetary system: the gaseous and dusty disks surrounding three white dwarfs. Astrophys. J. 722, 1078–1091 (2010).

    ADS  CAS  Google Scholar 

  59. 59.

    Kinnear, T. Irradiated Gaseous Discs Around White Dwarfs. Master’s thesis, Univ. of Warwick (2011).

  60. 60.

    Grevesse, N., Asplund, M., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Astrophys. Space Sci. 328, 179–183 (2010).

    ADS  CAS  Google Scholar 

  61. 61.

    Frank, J., King, A. & Raine, D. J. Accretion Power in Astrophysics 3rd edn (Cambridge University Press, 2002).

  62. 62.

    Marsh, T. R. LTE models of the emission lines of the dwarf nova Z Cha. Mon. Not. R. Astron. Soc. 228, 779–796 (1987).

    ADS  CAS  Google Scholar 

  63. 63.

    Szkody, P. et al. Cataclysmic variables from Sloan Digital Sky Survey. VI. The sixth year (2005). Astron. J. 134, 185–194 (2007).

    ADS  CAS  Google Scholar 

  64. 64.

    Szkody, P. et al. Finding the instability strip for accreting pulsating white dwarfs from Hubble Space Telescope and optical observations. Astrophys. J. 710, 64–77 (2010).

    ADS  Google Scholar 

  65. 65.

    Breedt, E. et al. 1000 cataclysmic variables from the Catalina Real-Time Transient Survey. Mon. Not. R. Astron. Soc. 443, 3174–3207 (2014).

    ADS  Google Scholar 

  66. 66.

    Thorstensen, J. R., Alper, E. H. & Weil, K. E. A trip to the cataclysmic binary zoo: detailed follow-up of 35 recently discovered systems. Astron. J. 152, 226 (2016).

    ADS  Google Scholar 

  67. 67.

    Gänsicke, B. T. et al. Sdss unveils a population of intrinsically faint cataclysmic variables at the minimum orbital period. Mon. Not. R. Astron. Soc. 397, 2170–2188 (2009).

    ADS  Google Scholar 

  68. 68.

    Pala, A. F. et al. Effective temperatures of cataclysmic-variable white dwarfs as a probe of their evolution. Mon. Not. R. Astron. Soc. 466, 2855–2878 (2017).

    ADS  CAS  Google Scholar 

  69. 69.

    Hillwig, T. C., Honeycutt, R. K. & Robertson, J. W. Post-common-envelope binary stars and the precataclysmic binary PG 1114+187. Astron. J. 120, 1113–1119 (2000).

    ADS  CAS  Google Scholar 

  70. 70.

    Kawka, A., Vennes, S., Dupuis, J. & Koch, R. The 0.33 day DA plus dME binary BPM 6502. Astron. J. 120, 3250–3254 (2000).

    ADS  CAS  Google Scholar 

  71. 71.

    O’Donoghue, D. et al. The DA+dMe eclipsing binary EC13471-1258: its cup runneth over… just. Mon. Not. R. Astron. Soc. 345, 506–528 (2003).

    ADS  Google Scholar 

  72. 72.

    Schmidt, G. D., Smith, P. S., Harvey, D. A. & Grauer, A. D. The precataclysmic variable GD 245. Astron. J. 110, 398–404 (1995).

    ADS  Google Scholar 

  73. 73.

    Aungwerojwit, A. et al. HS 1857+5144: a hot and young pre-cataclysmic variable. Astron. Astrophys. 469, 297–305 (2007).

    ADS  CAS  Google Scholar 

  74. 74.

    Maxted, P. F. L., Napiwotzki, R., Dobbie, P. D. & Burleigh, M. R. Survival of a brown dwarf after engulfment by a red giant star. Nature 442, 543–545 (2006).

    ADS  CAS  PubMed  Google Scholar 

  75. 75.

    Parsons, S. G. et al. Testing the white dwarf mass-radius relationship with eclipsing binaries. Mon. Not. R. Astron. Soc. 470, 4473–4492 (2017).

    ADS  CAS  Google Scholar 

  76. 76.

    Nebot Gómez-Morán, A. et al. Post common envelope binaries from SDSS. XII. The orbital period distribution. Astron. Astrophys. 536, A43 (2011).

    Google Scholar 

  77. 77.

    Dye, S. et al. The UKIRT Hemisphere Survey: definition and J-band data release. Mon. Not. R. Astron. Soc. 473, 5113–5125 (2018).

    ADS  Google Scholar 

  78. 78.

    Hoard, D. W. et al. Cool companions to white dwarf stars from the Two Micron All Sky Survey All Sky Data Release. Astron. J. 134, 26–42 (2007).

    ADS  CAS  Google Scholar 

  79. 79.

    Debes, J. H. & Measuring, M. Dwarf winds with DAZ white dwarfs. Astrophys. J. 652, 636–642 (2006).

    ADS  CAS  Google Scholar 

  80. 80.

    Tappert, C., Gänsicke, B. T., Rebassa-Mansergas, A., Schmidtobreick, L. & Schreiber, M. R. Multiple emission line components in detached post-common-envelope binaries. Astron. Astrophys. 531, A113 (2011).

    ADS  Google Scholar 

  81. 81.

    Eggleton, P. P. Approximations to the radii of Roche lobes. Astrophys. J. 268, 368–369 (1983).

    ADS  Google Scholar 

  82. 82.

    Owen, J. E. Atmospheric escape and the evolution of close-in exoplanets. Annu. Rev. Earth Planet. Sci. 47, 67–90 (2019).

    ADS  CAS  Google Scholar 

  83. 83.

    Vidal-Madjar, A. et al. An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422, 143–146 (2003).

    ADS  CAS  PubMed  Google Scholar 

  84. 84.

    Lecavelier des Etangs, A. et al. Evaporation of the planet HD 189733b observed in H I Lyman-α. Astron. Astrophys. 514, A72 (2010).

    Google Scholar 

  85. 85.

    Kulow, J. R., France, K., Linsky, J. & Loyd, R. O. P. Lyα transit spectroscopy and the neutral hydrogen tail of the hot Neptune GJ 436b. Astrophys. J. 786, 132 (2014).

    ADS  Google Scholar 

  86. 86.

    Lavie, B. et al. The long egress of GJ 436b’s giant exosphere. Astron. Astrophys. 605, L7 (2017).

    ADS  Google Scholar 

  87. 87.

    Vidal-Madjar, A. et al. Magnesium in the atmosphere of the planet HD 209458 b: observations of the thermosphere-exosphere transition region. Astron. Astrophys. 560, A54 (2013).

    Google Scholar 

  88. 88.

    Ben-Jaffel, L. & Ballester, G. E. Hubble Space Telescope detection of oxygen in the atmosphere of exoplanet HD 189733b. Astron. Astrophys. 553, A52 (2013).

    ADS  Google Scholar 

  89. 89.

    Poppenhaeger, K., Schmitt, J. H. M. M. & Wolk, S. J. Transit observations of the hot Jupiter HD 189733b at X-ray wavelengths. Astrophys. J. 773, 62 (2013).

    ADS  Google Scholar 

  90. 90.

    Murray-Clay, R. A., Chiang, E. I. & Murray, N. Atmospheric escape from hot Jupiters. Astrophys. J. 693, 23–42 (2009).

    ADS  CAS  Google Scholar 

  91. 91.

    Chayer, P., Fontaine, G. & Wesemael, F. Radiative levitation in hot white dwarfs: equilibrium theory. Astrophys. J. Suppl. 99, 189–221 (1995).

    ADS  CAS  Google Scholar 

  92. 92.

    Owen, J. E. & Alvarez, M. A. UV driven evaporation of close-in planets: energy-limited, recombination-limited, and photon-limited flows. Astrophys. J. 816, 34 (2015).

    ADS  Google Scholar 

  93. 93.

    Erkaev, N. V. et al. Roche lobe effects on the atmospheric loss from “hot Jupiters”. Astron. Astrophys. 472, 329–334 (2007).

    ADS  CAS  Google Scholar 

  94. 94.

    Schwadron, N. A. et al. Solar radiation pressure and local interstellar medium flow parameters from Interstellar Boundary Explorer low energy hydrogen measurements. Astrophys. J. 775, 86 (2013).

    ADS  Google Scholar 

  95. 95.

    Bzowski, M. et al. Solar parameters for modeling the interplanetary background. In Cross-Calibration of Far UV Spectra of Solar System Objects and the Heliosphere (eds Quémerais, E., et al.) 67 (ISSI Scientific Report Series 13, 2013).

    Google Scholar 

  96. 96.

    McClintock, W. E., Rottman, G. J. & Woods, T. N. Solar-Stellar Irradiance Comparison Experiment II (Solstice II): instrument concept and design. Sol. Phys. 230, 225–258 (2005).

    ADS  Google Scholar 

  97. 97.

    Valsecchi, F., Rappaport, S., Rasio, F. A., Marchant, P. & Rogers, L. A. Tidally-driven Roche-lobe overflow of hot Jupiters with MESA. Astrophys. J. 813, 101 (2015).

    ADS  Google Scholar 

  98. 98.

    Bashi, D., Helled, R., Zucker, S. & Mordasini, C. Two empirical regimes of the planetary mass-radius relation. Astron. Astrophys. 604, A83 (2017).

    ADS  Google Scholar 

  99. 99.

    Farihi, J., Parsons, S. G. & Gänsicke, B. T. A circumbinary debris disk in a polluted white dwarf system. Nat. Astron. 1, 0032 (2017).

    ADS  Google Scholar 

  100. 100.

    Soker, N. Can planets influence the horizontal branch morphology? Astron. J. 116, 1308–1313 (1998).

    ADS  Google Scholar 

  101. 101.

    Dewi, J. D. M. & Tauris, T. M. On the energy equation and efficiency parameter of the common envelope evolution. Astron. Astrophys. 360, 1043–1051 (2000).

    ADS  Google Scholar 

  102. 102.

    Zorotovic, M. et al. Post common envelope binaries from SDSS. XIII. Mass dependencies of the orbital period distribution. Astron. Astrophys. 536, L3 (2011).

    ADS  Google Scholar 

  103. 103.

    Hurley, J. R., Tout, C. A. & Pols, O. R. Evolution of binary stars and the effect of tides on binary populations. Mon. Not. R. Astron. Soc. 329, 897–928 (2002).

    ADS  Google Scholar 

  104. 104.

    Zorotovic, M., Schreiber, M. R., Gänsicke, B. T. & Nebot Gómez-Morán, A. Post-common-envelope binaries from SDSS. IX: constraining the common-envelope efficiency. Astron. Astrophys. 520, A86 (2010).

    ADS  Google Scholar 

  105. 105.

    Borgniet, S. et al. Extrasolar planets and brown dwarfs around AF-type stars. X. the SOPHIE sample: combining the SOPHIE and HARPS surveys to compute the close giant planet mass-period distribution around AF-type stars. Astron. Astrophys. 621, A87 (2019).

    CAS  Google Scholar 

  106. 106.

    Veras, D. & Gänsicke, B. T. Detectable close-in planets around white dwarfs through late unpacking. Mon. Not. R. Astron. Soc. 447, 1049–1058 (2015).

    ADS  Google Scholar 

  107. 107.

    Thorngren, D. & Fortney, J. J. Connecting giant planet atmosphere and interior modeling: constraints on atmospheric metal enrichment. Astrophys. J. Lett. 874, L31 (2019).

    ADS  CAS  Google Scholar 

  108. 108.

    Fontaine, G., Brassard, P. & Bergeron, P. The potential of white dwarf cosmochronology. Publ. Astron. Soc. Pacif. 113, 409–435 (2001).

    ADS  Google Scholar 

Download references


Funding for the Sloan Digital Sky Survey IV was provided by the Alfred P. Sloan Foundation, the US Department of Energy Office of Science, and the Participating Institutions. The SDSS website is Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 0102.C-0351(A). B.T.G. and C.J.M. were supported by the UK STFC grant ST/P000495. M.R.S. acknowledges support from the Millennium Nucleus for Planet Formation (NPF) and Fondecyt (grant 1181404). O.T. was supported by a Leverhulme Trust Research Project Grant. The research leading to these results has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme number 677706 (WD3D).

Author information




All authors contributed to the data interpretation, discussion and writing of this article. B.T.G. wrote the ESO proposal, carried out the observations, and modelled the emission line profiles. M.R.S. developed the models for the past and future evolution of the planet, and for the photo-evaporation. O.T. developed the Cloudy model for the circumstellar disk. O.T. and D.K. carried out the photospheric analysis. N.P.G.F. identified WD J0914+1914 as unusual white dwarf and reduced the X-Shooter data. C.J.M. searched the SDSS spectroscopic data for additional white dwarfs exhibiting oxygen or sulfur lines.

Corresponding author

Correspondence to Boris T. Gänsicke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Nature thanks Patrick Dufour and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Fig. 1 Identification spectrum of WD J0914+1914.

The unusual nature of WD J0914+1914 was identified from its optical spectrum within SDSS Data Release 14. The Hα, O i 7,774 Å and O i 8,446 Å lines are clearly detected, S [ii] 4,068 Å and a blend of S i and O i near 9,240 Å are present near the noise level.

Extended Data Fig. 2 Emission lines from a Keplerian disk.

The double-peaked emission lines of hydrogen (a), oxygen (b, c, e, f) and sulfur (d) detected in the optical spectrum of WD J0914+1914 originate in a gaseous circumstellar disk. Shown in red are synthetic disk profiles computed by convolving the Cloudy model that best matches the observed line flux ratios with the broadening function of a Keplerian disk. Adopting an inclination of i = 60°, the widths and double-peak separations of the Hα (a) and O i 8,446 Å (c) lines are well reproduced for inner and outer disk radii of rin ≈ (1.0–1.3)R and rout ≈ (2.8–3.3)R, respectively, consistent with the results from the Cloudy models (see Extended Data Fig. 4). The emission of [S ii] 4,068 Å (d) extends from about 1R to 10R. The V-shaped central depression of the O i 8,446 Å (c) line suggests that the line is optically thick.

Extended Data Fig. 3 Dynamical constraints on the location of the circumstellar gas emitting the observed double-peaked emission lines.

The gas in the circumstellar disk follows Keplerian orbits, and hence the profile shape of the observed emission lines (see Fig. 1 and Extended Data Fig. 2) encodes the location of the gas. The velocity separation of the double-peaks and the maximum velocity in the line wings correspond to motion of gas at the outer edge and inner edge of the disk, respectively. For a given inclination of the disk, these velocities map into semi-major axes. A lower limit on the inclination, i > 5°, arises from the finite size of the white dwarf (Rwd), and an upper limit on the extent of the disk is provided for an edge-on, i = 90°, inclination. The forbidden [S ii] 4,068 Å line has a much smaller separation of the double-peaks compared to Hα and O i 8,446 Å, implying a larger radial extent.

Extended Data Fig. 4 Quality of the Cloudy fits.

The line flux ratios of a grid of Cloudy models spanning a range of gas densities, ρ, and radial distances from the white dwarf, r, from the white dwarf are compared to the observed values. The two histograms show the average quality for constant r (top) and constant ρ (right). The observed emission line fluxes are reasonably well reproduced by photo-ionized gas with a density of ρ = 10−11.3 g cm−3 and located at about (1–4)R.

Extended Data Fig. 5 Incident EUV flux and mass loss rates as a function of orbital separation.

a, Comparison of the irradiating EUV flux around T Tauri stars (yellow-shaded region) and that of WD J0914+1914 (red line). The outer border of the warm Neptune desert is indicated by the vertical dashed line. The orbital separation of the planet orbiting WD J0914+1914 estimated from the size of the accretion disk is about (14–16)R (grey-shaded region). Subject to an EUV luminosity comparable to that of planets around T Tauri stars, the giant planet at WD J0914+1914 is well within the warm Neptune desert. b, Mass loss rates estimated from the assumption of recombination and energy limited hydrodynamic escape for a Jupiter mass and a Neptune mass planet. Substantial mass loss could be generated even for separations of up to a few hundred solar radii, well beyond the estimated orbital location of the giant planet at WD J0914+1914.

Extended Data Fig. 6 Comparison of the the Lyα emission of WD J0914+1914 with the Sun.

a, Lyα irradiance of the Sun across a full solar activity cycle as measured by the SORCE SOLSTICE instrument. The radiation pressure on neutral interplanetary hydrogen in the solar system usually exceeds the gravitational force exerted by the Sun. b, The Lyα flux of the Sun during minimum (2008) and maximum (2014) in comparison to the emission of WD J0914+1914 at a distance of 15R. Given that WD J0914+1914 is less massive than the Sun, and that its Lyα flux is comparable to that of the Sun in the core of the line, but much larger in the wings (even during the 2014 solar maximum), radiation pressure strongly impedes the inflow of hydrogen, explaining the large depletion of hydrogen with respect to oxygen and sulfur within the circumstellar disk.

Extended Data Fig. 7 Final separation after common envelope evolution as a function of planetary mass.

We adopted two common envelope efficiencies, α = 0.25 (solid line), and α = 1.0 (dashed line) to calculate an upper limit for the final separation (afinal) if the progenitor of WD J0914+1914 and the planet evolved through a common envelope phase. The parameter space of possible outcomes of common envelope evolution lies below these lines (grey-shaded region). We consider the smaller efficiency to be more realistic. For configurations below the red line (aphot), the planetary mass object will evaporate inside the giant envelope; below the blue line (aRL), it would overflow its Roche lobe. Only planets with parameters within the green-shaded region can survive common envelope evolution. Whereas common envelope evolution can bring a Jupiter-mass planet to the estimated location of the planet around WD J0914+1914 (at (14–16)R), smaller planets will be evaporated in the giant envelope.

Extended Data Fig. 8 The evolution of the mass loss rate.

White dwarfs cool with time and as a consequence their EUV luminosity decreases. We calculated model spectra for effective temperatures from 80,000 K to 10,000 K, integrated the EUV flux, and determined the mass loss rate of a Jupiter and a Neptune at a distance of 10R. At a cooling age of 364 million years the white dwarf will have cooled down to 12,000 K, the mass loss rate will drop below about 106 g s−1, and the resulting photospheric contamination by oxygen and sulfur will become undetectable. Integrating the mass loss rate over the entire cooling time results in a total mass loss of about 0.002MJup, which corresponds to about 3.7% of the mass of Neptune.

Extended Data Table 1 White dwarf parameters
Extended Data Table 2 Element number abundances, log(Z/H)

Supplementary information

Supplementary Table 1

This file contains the reduced and averaged X-Shooter spectrum of WDJ0914+1914, as well as the best-fit white dwarf model.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gänsicke, B.T., Schreiber, M.R., Toloza, O. et al. Accretion of a giant planet onto a white dwarf star. Nature 576, 61–64 (2019).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing