Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A wide star–black-hole binary system from radial-velocity measurements

Matters Arising to this article was published on 29 April 2020

Abstract

All stellar-mass black holes have hitherto been identified by X-rays emitted from gas that is accreting onto the black hole from a companion star. These systems are all binaries with a black-hole mass that is less than 30 times that of the Sun1,2,3,4. Theory predicts, however, that X-ray-emitting systems form a minority of the total population of star–black-hole binaries5,6. When the black hole is not accreting gas, it can be found through radial-velocity measurements of the motion of the companion star. Here we report radial-velocity measurements taken over two years of the Galactic B-type star, LB-1. We find that the motion of the B star and an accompanying Hα emission line require the presence of a dark companion with a mass of \({68}_{-13}^{+11}\) solar masses, which can only be a black hole. The long orbital period of 78.9 days shows that this is a wide binary system. Gravitational-wave experiments have detected black holes of similar mass, but the formation of such massive ones in a high-metallicity environment would be extremely challenging within current stellar evolution theories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical spectra of LB-1.
Fig. 2: Radial motions of the visible star and the dark primary.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. McClintock, J. E. & Remillard, R. A. in Compact Stellar X-ray Sources (eds Lewin, W. H. G. & van der Klis, M.) 157–213 (Cambridge Univ. Press, 2006).

  2. Casares, J. et al. A Be-type star with a black-hole companion. Nature 505, 378–381 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Silverman, J. M. & Filippenko, A. V. On IC 10 X-1, the most massive known stellar-mass black hole. Astrophys. J. 678, L17–L20 (2008).

    Article  ADS  CAS  Google Scholar 

  4. Crowther, P. A. et al. NGC 300 X-1 is a Wolf-Rayet/black hole binary. Mon. Not. R. Astron. Soc. 403, L41–L45 (2010).

    Article  ADS  Google Scholar 

  5. Romani, R. W. A census of low mass black hole binaries. Astron. Astrophys. 333, 583–590 (1998).

    ADS  Google Scholar 

  6. Belczynski, K. & Ziolkowski, J. On the apparent lack of Be X-ray binaries with black holes. Astrophys. J. 707, 870–877 (2009).

    Article  ADS  Google Scholar 

  7. Cui, X.-Q. et al. The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Res. Astron. Astrophys. 12, 1197–1242 (2012).

    Article  ADS  Google Scholar 

  8. Howell, S. B. et al. The K2 mission: characterization and early results. Publ. Astron. Soc. Pacif. 126, 398–408 (2014).

    Article  ADS  Google Scholar 

  9. Cepa, J. et al. OSIRIS tunable imager and spectrograph. Proc. SPIE 4008, 623–631 (2000).

    Article  ADS  Google Scholar 

  10. Vogt, S. S. et al. HIRES: the high-resolution echelle spectrometer on the Keck 10-m telescope. Proc. SPIE 2198, 362–375 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Hubeny, I. & Lanz, T. Non-LTE line-blanketed model atmospheres of hot stars. 1: Hybrid complete linearization/accelerated lambda iteration method. Astrophys. J. 439, 875–904 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Bressan, A. et al. PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).

    Article  ADS  CAS  Google Scholar 

  13. Green, G. M. et al. A three-dimensional map of Milky Way dust. Astrophys. J. 810, 25 (2015).

    Article  ADS  CAS  Google Scholar 

  14. Hanuschik, R. W., Hummel, W., Sutorius, E., Dietle, O. & Thimm, G. Atlas of high-resolution emission and shell lines in Be stars. Line profiles and short-term variability. Astrophys. Space Sci. 116, 309–358 (1996).

    CAS  Google Scholar 

  15. Hummel, W. Line formation in Be star envelopes I. Inhomogeneous density distributions. Astron. Astrophys. 289, 458–468 (1994).

    ADS  CAS  Google Scholar 

  16. Artymowicz, P. & Lubow, S. H. Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes. Astrophys. J. 421, 651–667 (1994).

    Article  ADS  Google Scholar 

  17. Abbott, B. P. et al. Binary black hole mergers in the first Advanced LIGO observing run. Phys. Rev. X 6, 041015 (2016).

    Google Scholar 

  18. Abbot, B. P. et al. GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys. Rev. X 9, 031040 (2019).

    Google Scholar 

  19. Belczynski, K., Holz, D. E., Bulik, T. & O’Shaughnessy, R. The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range. Nature 534, 512–515 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Stevenson, S. et al. Formation of the first three gravitational-wave observations through isolated binary evolution. Nat. Commun. 8, 14906 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Belczynski, K. et al. On the maximum mass of stellar black holes. Astrophys. J. 714, 1217–1226 (2010).

    Article  ADS  Google Scholar 

  22. Heger, A., Fryer, C. L., Woosley, S. E., Langer, N. & Hartmann, D. H. How massive single stars end their life. Astrophys. J. 591, 288–300 (2003).

    Article  ADS  Google Scholar 

  23. Spera, M., Mapelli, M. & Bressan, A. The mass spectrum of compact remnants from the PARSEC stellar evolution tracks. Mon. Not. R. Astron. Soc. 451, 4086–4103 (2015).

    Article  ADS  CAS  Google Scholar 

  24. Fryer, C. L. Mass limits for black hole formation. Astrophys. J. 522, 413–418 (1999).

    Article  ADS  CAS  Google Scholar 

  25. Adams, S. M., Kochanek, C. S., Gerke, J. R., Stanek, K. Z. & Dai, X. The search for failed supernovae with the Large Binocular Telescope: confirmation of a disappearing star. Mon. Not. R. Astron. Soc. 468, 4968–4981 (2017).

    Article  ADS  CAS  Google Scholar 

  26. Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G. & Andrae, R. Estimating distance from parallaxes. IV. Distances to 1.33 billion stars in Gaia Data Release 2. Astron. J. 156, 58 (2018).

    Article  ADS  Google Scholar 

  27. Narayan, R., Mahadevan, R. & Quataert, E. in Theory of Black Hole Accretion Disks (eds Abramowicz, M. A. et al.) 148–182 (Cambridge Univ. Press, 1998).

  28. de Jager, C., Nieuwenhuijzen, H. & van der Hucht, K. A. Mass loss rates in the Hertzsprung-Russell diagram. Astrophys. J. Suppl. Ser. 72, 259–289 (1988).

    Google Scholar 

  29. Casares, J., Charles, P. A., Naylor, T. & Pavlenko, E. P. Optical studies of V404 Cyg, the X-ray transient GS 2023 + 338 – III. The secondary star and accretion disc. Mon. Not. R. Astron. Soc. 265, 834–852 (1993).

    Article  ADS  CAS  Google Scholar 

  30. McClintock, J. E. et al. Multiwavelength spectrum of the black hole XTE J1118 + 480 in quiescence. Astrophys. J. 593, 435–451 (2003).

    Article  ADS  CAS  Google Scholar 

  31. Bai, Z. R. et al. Sky subtraction for LAMOST. Res. Astron. Astrophys. 17, 091 (2017).

    Article  ADS  CAS  Google Scholar 

  32. Sargent, W. L. & Searle, L. A quantitative description of the spectra of the brighter Feige stars. Astrophys. J. 152, 443–452 (1968).

    Article  ADS  CAS  Google Scholar 

  33. Howard, A. W. et al. The California Planet Survey. I. Four new giant exoplanets. Astrophys. J. 721, 1467–1481 (2010).

    Article  ADS  CAS  Google Scholar 

  34. Lanz, T. & Hubeny, I. A grid of NLTE line-blanketed model atmospheres of early B-type stars. Astrophys. J. Suppl. Ser. 169, 83–104 (2007).

    Article  ADS  CAS  Google Scholar 

  35. Marigo, P. et al. A new generation of PARSEC-COLIBRI stellar isochrones including the TP-AGB phase. Astrophys. J. 835, 77 (2017).

    Article  ADS  CAS  Google Scholar 

  36. Bonatto, C., Bica, E., Ortolani, S. & Barbuy, B. Detection of Ks-excess stars in the 14 Myr open cluster NGC 4755. Astron. Astrophys. 453, 121–132 (2006).

    Article  ADS  Google Scholar 

  37. Lindegren, L. et al. Gaia Data Release 2. The astrometric solution. Astron. Astrophys. 616, A2 (2018).

    Article  Google Scholar 

  38. Geier, S., Raddi, R., Gentile Fusillo, N. P. & Marsh, T. R. The population of hot subdwarf stars studied with Gaia. II. The Gaia DR2 catalogue of hot subluminous stars. Astron. Astrophys. 621, A38 (2019).

    Article  ADS  CAS  Google Scholar 

  39. Friedman, S. D. et al. Studies of diffuse interstellar bands V. Pairwise correlations of eight strong DIBs and neutral hydrogen, molecular hydrogen, and color excess. Astrophys. J. 727, 33 (2011).

    Article  ADS  CAS  Google Scholar 

  40. Girardi, L., Grebel, E. K., Odenkirchen, M. & Chiosi, C. Theoretical isochrones in several photometric systems. II. The Sloan Digital Sky Survey ugriz system. Astron. Astrophys. 422, 205–215 (2004).

    Article  ADS  Google Scholar 

  41. Lomb, N. R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976).

    Article  ADS  Google Scholar 

  42. Scargle, J. D. Studies in astronomical time series analysis. II – Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982).

    Article  ADS  Google Scholar 

  43. Hurley, J. R., Pols, O. R. & Tout, C. A. Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity. Mon. Not. R. Astron. Soc. 315, 543–569 (2000).

    Article  ADS  CAS  Google Scholar 

  44. Crowther, P. A. et al. The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 Msolar stellar mass limit. Mon. Not. R. Astron. Soc. 408, 731–751 (2010).

    Article  ADS  Google Scholar 

  45. Ramachandran, V. et al. Testing massive star evolution, star formation history, and feedback at low metallicity. Spectroscopic analysis of OB stars in the SMC wing. Astron. Astrophys. 625, A104 (2019).

    Article  CAS  Google Scholar 

  46. Vink, J. S., de Koter, A. & Lamers, H. J. G. L. M. Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 369, 574–588 (2001).

    Article  ADS  CAS  Google Scholar 

  47. Mirabel, I. F. & Rodrigues, I. Formation of a black hole in the dark. Science 300, 1119–1120 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Belczynski, K. et al. Compact object modeling with the StarTrack population synthesis code. Astrophys. J. Suppl. Ser. 174, 223–260 (2008).

    Article  ADS  CAS  Google Scholar 

  49. Belczynski, K. et al. The evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates of LIGO/Virgo binary black holes. Preprint at http://arXiv.org/abs/1706.07053 (2017).

  50. Woosley, S. E. Pulsational pair-instability supernovae. Astrophys. J. 836, 244 (2017).

    Article  ADS  Google Scholar 

  51. Leung, S.-C., Nomoto, K. & Blinnikov, S. Pulsational pair-instability supernova I: pre-collapse evolution and pulsational mass ejection. Preprint at http://arXiv.org/abs/1901.11136 (2019).

  52. Belczynski, K. et al. The effect of pair-instability mass loss on black-hole mergers. Astron. Astrophys. 594, A97 (2016).

    Article  CAS  Google Scholar 

  53. Dominik, M. et al. Double compact objects. I. The significance of the common envelope on merger rates. Astrophys. J. 759, 52 (2012).

    Article  ADS  Google Scholar 

  54. van den Heuvel, E. P. J., Portegies Zwart, S. F. & de Mink, S. E. Forming short-period Wolf-Rayet X-ray binaries and double black holes through stable mass transfer. Mon. Not. R. Astron. Soc. 471, 4256–4264 (2017).

    Article  ADS  CAS  Google Scholar 

  55. Jiang, Y.-F., Stone, J. M. & Davis, S. W. A global three-dimensional radiation magneto-hydrodynamic simulation of super-Eddington accretion disks. Astrophys. J. 796, 106 (2014).

    Article  ADS  Google Scholar 

  56. Sądowski, A., Narayan, R., McKinney, J. C. & Tchekhovskoy, A. Numerical simulations of super-critical black hole accretion flows in general relativity. Mon. Not. R. Astron. Soc. 439, 503–520 (2014).

    Article  ADS  Google Scholar 

  57. Abramowicz, M. A. & Fragile, P. C. Foundations of black hole accretion disk theory. Living Rev. Relativ. 16, 1 (2013).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  58. Abubekerov, M. K., Antokhina, E. A., Bogomazov, A. I. & Cherepashchuk, A. M. The mass of the black hole in the X-ray binary M33 X-7 and the evolutionary status of M33 X-7 and IC 10 X-1. Astron. Rep. 53, 232–242 (2009).

    Article  ADS  CAS  Google Scholar 

  59. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).

    Article  ADS  CAS  Google Scholar 

  60. Hurley, J. R., Tout, C. A. & Pols, O. R. Evolution of binary stars and the effect of tides on binary populations. Mon. Not. R. Astron. Soc. 329, 897–928 (2002).

    Article  ADS  Google Scholar 

  61. Claret, A. New grids of stellar models including tidal-evolution constants up to carbon burning. IV. From 0.8 to 125 M: high metallicities (Z = 0.04-0.10). Astron. Astrophys. 467, 1389–1396 (2007).

    Article  ADS  Google Scholar 

  62. Plotkin, R. M., Gallo, E. & Jonker, P. G. The X-ray spectral evolution of Galactic black hole X-ray binaries toward quiescence. Astrophys. J. 773, 59 (2013).

    Article  ADS  Google Scholar 

  63. Remillard, R. A. & McClintock, J. E. X-ray properties of black-hole binaries. Annu. Rev. Astron. Astrophys. 44, 49–92 (2006).

    Article  ADS  Google Scholar 

  64. Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).

    Article  ADS  Google Scholar 

  65. Predehl, P. & Schmitt, J. H. M. M. X-raying the interstellar medium: ROSAT observations of dust scattering halos. Astron. Astrophys. 293, 889–905 (1995).

    ADS  Google Scholar 

  66. Güver, T. & Özel, F. The relation between optical extinction and hydrogen column density in the Galaxy. Mon. Not. R. Astron. Soc. 400, 2050–2053 (2009).

    Article  ADS  Google Scholar 

  67. Kalberla, P. M. W. et al. The Leiden/Argentine/Bonn (LAB) survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775–782 (2005).

    Article  ADS  CAS  Google Scholar 

  68. Liszt, H. N(H I)/E(B − V). Astrophys. J. 780, 10 (2014).

    Article  ADS  CAS  Google Scholar 

  69. Garcia, M. R. et al. New evidence for black hole event horizons from Chandra. Astrophys. J. 553, L47–L50 (2001).

    Article  ADS  Google Scholar 

  70. McClintock, J. E., Narayan, R. & Rybicki, G. B. On the lack of thermal emission from the quiescent black hole XTE J1118 + 480: evidence for the event horizon. Astrophys. J. 615, 402–415 (2004).

    Article  ADS  CAS  Google Scholar 

  71. Yuan, F., Yu, Z. & Ho, L. C. Revisiting the “fundamental plane” of black hole activity at extremely low luminosities. Astrophys. J. 703, 1034–1043 (2009).

    Article  ADS  Google Scholar 

  72. Ho, L. C. Radiatively inefficient accretion in nearby galaxies. Astrophys. J. 699, 626–637 (2009).

    Article  ADS  CAS  Google Scholar 

  73. Gallo, E. et al. AMUSE-Virgo. II. Down-sizing in black hole accretion. Astrophys. J. 714, 25–36 (2010).

    Article  ADS  Google Scholar 

  74. Narayan, R., Mahadevan, R., Grindlay, J. E., Popham, R. G. & Gammie, C. Advection-dominated accretion model of Sagittarius A*: evidence for a black hole at the Galactic center. Astrophys. J. 492, 554–568 (1998).

    Article  ADS  Google Scholar 

  75. Yuan, F. & Narayan, R. Hot accretion flows around black holes. Annu. Rev. Astron. Astrophys. 52, 529–588 (2014).

    Article  ADS  Google Scholar 

  76. Mahadevan, R. Scaling laws for advection-dominated flows: applications to low-luminosity galactic nuclei. Astrophys. J. 477, 585–601 (1997).

    Article  ADS  Google Scholar 

  77. Merloni, A., Heinz, S. & di Matteo, T. A fundamental plane of black hole activity. Mon. Not. R. Astron. Soc. 345, 1057–1076 (2003).

    Article  ADS  Google Scholar 

  78. Russell, H. R. et al. Radiative efficiency, variability and Bondi accretion on to massive black holes: the transition from radio AGN to quasars in brightest cluster galaxies. Mon. Not. R. Astron. Soc. 432, 530–553 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Wang, J. Miller, E. Cackett, R. Narayan, H. Chen, B. Zhang, C. Motch, M. Bessel, G. Da Costa, A. Bogomazov, S. Wang and many others for helpful discussions. This work was supported by the National Science Foundation of China (NSFC) under grant numbers 11988101/11425313 (J.L.), 11773015/11333004/U1838201 (X.L.), 11603010 (Y.S.), 11690024 (Y. Lei), U1531118 (W.Z.), 11603035 (S.W.), 11733009 (Q.L.) and 11325313/11633002 (X.W.). It was also supported by the National Key Research and Development Program of China (NKRDPC) under grant numbers 2019YFA0405504 and 2016YFA0400804 (J.L.), 2016YFA0400803 (X.L.) and 2016YFA0400704 (Y. Lu). J.C. acknowledges support by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) under grant AYA2017-83216-P. K.B. acknowledges support from the Polish National Science Center (NCN) grants OPUS (2015/19/B/ST9/01099) and Maestro (2018/30/A/ST9/00050). This work was only made possible with LAMOST (Large Sky Area Multi-Object Fiber Spectroscopic Telescope), a National Major Scientific Project built by the Chinese Academy of Sciences. Funding for the project was provided by the National Development and Reform Commission. LAMOST is operated and managed by the National Astronomical Observatories, Chinese Academy of Sciences. This work is partly based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma. Part of the data was obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The scientific results reported in this article are based in part on observations made by the Chandra X-ray Observatory (ObsID 20928). This research has made use of software provided by the Chandra X-ray Center (CXC) in the application packages CIAO.

Author information

Authors and Affiliations

Authors

Contributions

J.L. and H.Z. are equally responsible for supervising the discovery and follow-up observations. H.Z. and Z.H. proposed the LAMOST monitoring campaign, and H.Z.’s group reduced the LAMOST data with meticulous efforts. J.L. proposed the GTC/Keck/Chandra observations, and his and H.Z.’s groups carried out subsequent data reduction and analysis. J.L. wrote the manuscript with help mainly from H.Z., Y. Lu, R.S., S.W., X.L., Y.S., T.W., Y.B., Z.B., W.Z., Q.G., Y.W., Z.Z., K.B. and J.C. W.W., A.H., W.M.G., J. Wang, J. Wu, L.S., R.S., X.W., J.B., R.D.S. and Q.L. also contributed to the physical interpretation and discussion. H.Y., Y.D., Y. Lei, Z.N., K.C., C.Z., X.M., L.Z., T.Z., H.W., J.R., Junbo Zhang, Jujia Zhang and X.W. also contributed to data collection and reduction. A.W.H. and H.I. contributed to collecting and reducing Keck data. A.C.L., R.C. and R.R. contributed to collecting and reducing GTC data. Z.Q., S.L. and M.L. contributed to utilization of Gaia data. Y.Z., G.Z., Y.C. and X.C. contributed to the implementation of LAMOST. All contributed to the paper in various forms.

Corresponding authors

Correspondence to Jifeng Liu or Haotong Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Using isochrones from PARSEC models.

The grid of logg and Teff was constructed using the PARSEC isochrones. The colour bar represents initial stellar mass. The black ellipse indicates the 90% uncertainty of the Teff and logg of the B star; all points inside it are considered as acceptable models for the B star.

Extended Data Fig. 2 SED fitting results for the B star.

a, E(B − V) versus distance, both of which are determined from the SED fitting. The colour bar indicates χ2. b, Distance versus stellar mass, the latter being determined from the acceptable PARSEC models of the B star. The colour bar indicates χ2. c, E(B − V) versus distance. The colour bar indicates logg, while the colour bar indicates χ2 in a. d, Several examples of the SED fitting. The black squares are the data from the UCAC4, 2MASS and AllWISE catalogues. The diamonds with different colours indicate magnitudes from different models. See Methods for details.

Extended Data Fig. 3 Variation of E(B − V) with distance in the direction of LB-1.

The black circles represent the extinction values corresponding to different distances from the 3D dust map. The green points are the extinction and distances from SED fitting for each acceptable model of the B star. The red cross marks the extinction value from the 3D dust map at 4.23 kpc, while the red dashed line shows the Gaia distance of 2.14 kpc.

Extended Data Fig. 4 Search for periodicities for LB-1 with the Lomb–Scargle method.

The radial-velocity curve from LAMOST, GTC and Keck observations is being used here. The highest peak corresponds to the orbital period of ~78.9 d.

Extended Data Fig. 5 Separation a as a function of MB and MBH.

Here a is calculated from Kepler’s third law for each pair of MB (B-star mass) and MBH (black-hole mass). The contours and colours both represent the values of a. The white dashed lines in the contour plot outline a valid region of the separation of the binary system. It comes from the limitations on MB, (7–9.1)M, and on MBH, (55–79)M. See Methods for details.

Extended Data Fig. 6 Semi-major axis of the orbit of the B-star aB as a function of MB and MBH.

Here aB is calculated from Kepler’s third law for each pair of MB (B-star mass) and MBH (black-hole mass). The contours and colours both represent the values of aB. The white dashed lines in the contour plot outline a valid region for the semi-major axis of the B star. It comes from the limitations on MB, (7–9.1)M, and on MBH, (55–79)M. See Methods for details.

Extended Data Fig. 7 Black-hole mass versus initial mass in the zero age main sequence (ZAMS) for single stars.

For standard wind mass-loss prescriptions, only low-mass black holes are predicted: MBH < 15M (pink curve). However, for reduced wind mass loss, much heavier black holes are formed: MBH = 30M for winds reduced to 50% (blue curve) and MBH = 60M for winds reduced to 30% (red curve) of the standard values. Note that to reach MBH = 80M (black curve) it is necessary to switch off pair-instability pulsation supernovae (PPSN) or pair-instability supernovae (PSN), which severely limit black-hole masses.

Extended Data Table 1 Spectral observations of LB-1
Extended Data Table 2 Hα measurement with different methods
Extended Data Table 3 Orbital parameters of LB-1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, H., Howard, A.W. et al. A wide star–black-hole binary system from radial-velocity measurements. Nature 575, 618–621 (2019). https://doi.org/10.1038/s41586-019-1766-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-019-1766-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing