Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering

Abstract

Because of their ability to confine light, optical resonators1,2,3 are of great importance to science and technology, but their performance is often limited by out-of-plane-scattering losses caused by inevitable fabrication imperfections4,5. Here we theoretically propose and experimentally demonstrate a class of guided resonances in photonic crystal slabs, in which out-of-plane-scattering losses are strongly suppressed by their topological nature. These resonances arise when multiple bound states in the continuum—each carrying a topological charge6—merge in momentum space and enhance the quality factors Q of all nearby resonances in the same band. Using such resonances in the telecommunication regime, we experimentally achieve quality factors as high as 4.9 × 105—12 times higher than those obtained with standard designs—and this enhancement remains robust for all of our samples. Our work paves the way for future explorations of topological photonics in systems with open boundary conditions and for their application to the improvement of optoelectronic devices in photonic integrated circuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Suppressing radiation losses by merging multiple topological charges.
Fig. 2: Topological protection against scattering losses.
Fig. 3: Experimental setup.
Fig. 4: Experimental results.
Fig. 5: 12-fold enhancement of Q via topological protection.

Data availability

The data that support the plots in this paper and other findings of this study are available from the corresponding author upon request.

References

  1. 1.

    Biberman, A., Shaw, M. J., Timurdogan, E., Wright, J. B. & Watts, M. R. Ultralow-loss silicon ring resonators. Opt. Lett. 37, 4236–4238 (2012).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Hossein-Zadeh, M. & Vahala, K. J. Free ultra-high-q microtoroid: a tool for designing photonic devices. Opt. Express 15, 166–175 (2007).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Akahane, Y., Asano, T., Song, B.-S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Minkov, M., Dharanipathy, U. P., Houdré, R. & Savona, V. Statistics of the disorder-induced losses of high-Q photonic crystal cavities. Opt. Express 21, 28233–28245 (2013).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Ishizaki, K., Okano, M. & Noda, S. Numerical investigation of emission in finite-sized, three-dimensional photonic crystals with structural fluctuations. J. Opt. Soc. Am. B 26, 1157–1161 (2009).

    CAS  Article  ADS  Google Scholar 

  6. 6.

    Zhen, B., Hsu, C. W., Lu, L., Stone, A. D. & Soljačić, M. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113, 257401 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).

    MathSciNet  CAS  Article  ADS  Google Scholar 

  8. 8.

    Gbur, G. J. Singular Optics (CRC Press, 2016).

  9. 9.

    von Neumann, J. & Wigner, E. Über merkwürdige diskrete Eigenwerte. Phys. Z. 30, 465–467 (1929).

    MATH  Google Scholar 

  10. 10.

    Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Plotnik, Y. et al. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 107, 183901 (2011).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Fan, S. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).

    Article  ADS  Google Scholar 

  13. 13.

    Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Gomis-Bresco, J., Artigas, D. & Torner, L. Anisotropy-induced photonic bound states in the continuum. Nat. Photon. 11, 232–236 (2017).

    CAS  Article  ADS  Google Scholar 

  15. 15.

    Molina, M. I., Miroshnichenko, A. E. & Kivshar, Y. S. Surface bound states in the continuum. Phys. Rev. Lett. 108, 070401 (2012).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lim, T. C. & Farnell, G. W. Character of pseudo surface waves on anisotropic crystals. J. Acoust. Soc. Am. 45, 845–851 (1969).

    CAS  Article  ADS  Google Scholar 

  17. 17.

    Cobelli, P. J., Pagneux, V., Maurel, A. & Petitjeans, P. Experimental observation of trapped modes in a water wave channel. EPL 88, 20006 (2009).

    Article  ADS  MATH  Google Scholar 

  18. 18.

    Hirose, K. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photon. 8, 406–411 (2014).

    CAS  Article  ADS  Google Scholar 

  19. 19.

    Kitamura, K., Sakai, K., Takayama, N., Nishimoto, M. & Noda, S. Focusing properties of vector vortex beams emitted by photonic-crystal lasers. Opt. Lett. 37, 2421–2423 (2012).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Iwahashi, S. et al. Higher-order vector beams produced by photonic-crystal lasers. Opt. Express 19, 11963–11968 (2011).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Lee, J., Zhen, B., Chua, S.-L., Shapira, O. & Soljačić, M. Fabricating centimeter-scale high quality factor two-dimensional periodic photonic crystal slabs. Opt. Express 22, 3724–3731 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Zhou, H. et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 359, eaap9859 (2018).

  23. 23.

    Zhang, Y. et al. Observation of polarization vortices in momentum space. Phys. Rev. Lett. 120, 186103 (2018).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Liang, Y., Peng, C., Sakai, K., Iwahashi, S. & Noda, S. Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects. Opt. Express 20, 15945–15961 (2012).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Ni, L., Jin, J., Peng, C. & Li, Z. Analytical and statistical investigation on structural fluctuations induced radiation in photonic crystal slabs. Opt. Express 25, 5580–5593 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Regan, E. C. et al. Direct imaging of isofrequency contours in photonic structures. Sci. Adv. 2, e1601591 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    CAS  Article  ADS  Google Scholar 

  28. 28.

    Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    MathSciNet  CAS  Article  ADS  Google Scholar 

  29. 29.

    Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Luchansky, M. S. & Bailey, R. C. High-Q optical sensors for chemical and biological analysis. Anal. Chem. 84, 793–821 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. W. Hsu for discussions. We also thank L. Zhang from Tsinghua University and W. Liu from the Institute of Semiconductors for assistance in the preparation of the device. C.P. was supported by the National Natural Science Foundation of China under grant number 61575002. B.Z. was supported by the US Air Force Office of Scientific Research under award number FA9550-18-1-0133, by the US National Science Foundation through grant DMR-1838412 and by the Army Research Office under grant number W911NF-19-1-0087. The research was sponsored in part by the Army Research Office under Cooperative Agreement number W911NF-18-2-0048.

Author information

Affiliations

Authors

Contributions

J.J., X.Y., L.N. and C.P. conceived the idea. J.J., X.Y., C.P., B.Z. and M.S. performed the theoretical study. J.J., X.Y., L.N. and C.P. performed the analytical calculations and numerical simulations. J.J. and X.Y. conducted the experiments and analysed the data. J.J., C.P. and B.Z. wrote the manuscript, with input from all authors. C.P. supervised the research. All authors discussed the results.

Corresponding author

Correspondence to Chao Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data Sections 1–8, Supplementary References and Supplementary Figures 1–9.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Yin, X., Ni, L. et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature 574, 501–504 (2019). https://doi.org/10.1038/s41586-019-1664-7

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing