An antiaromatic-walled nanospace


Over the past few decades, several molecular cages, hosts and nanoporous materials enclosing nanometre-sized cavities have been reported1,2,3,4,5, including coordination-driven nanocages6. Such nanocages have found widespread use in molecular recognition, separation, stabilization and the promotion of unusual chemical reactions, among other applications3,4,5,6,7,8,9,10. Most of the reported nanospaces within molecular hosts are confined by aromatic walls, the properties of which help to determine the host–guest behaviour. However, cages with nanospaces surrounded by antiaromatic walls have not yet been developed, owing to the instability of antiaromatic compounds; as such, the effect of antiaromatic walls on the properties of nanospaces remains unknown. Here we demonstrate the construction of an antiaromatic-walled nanospace within a self-assembled cage composed of four metal ions with six identical antiaromatic walls. Calculations indicate that the magnetic effects of the antiaromatic moieties surrounding this nanospace reinforce each other. This prediction is confirmed by 1H nuclear magnetic resonance (NMR) signals of bound guest molecules, which are observed at chemical shift values of up to 24 parts per million (ppm), owing to the combined antiaromatic deshielding effect of the surrounding rings. This value, shifted 15 ppm from that of the free guest, is the largest 1H NMR chemical shift displacement resulting from an antiaromatic environment observed so far. This cage may thus be considered as a type of NMR shift reagent, moving guest signals well beyond the usual NMR frequency range and opening the way to further probing the effects of an antiaromatic environment on a nanospace.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Cartoon representations of nanospaces.
Fig. 2: Synthesis and NMR characterization of 3.
Fig. 3: Crystal structure of 3 and NICS calculations.
Fig. 4: Host–guest chemistry within antiaromatic-walled nanospace.

Data availability

All data needed to evaluate the conclusions given in the paper are present in the paper and Supplementary Information. Any additional data related to this paper may be requested from the authors. Crystallographic data for the structure reported in this paper has been deposited at the Cambridge Crystallographic Data Centre (deposition number 1893553) and can be obtained free of charge via


  1. 1.

    Corma, A. State of the art and future challenges of zeolites as catalysts. J. Catal. 216, 298–312 (2003).

    CAS  Article  Google Scholar 

  2. 2.

    Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    Hooley, R. J. & Rebek, J. Jr Chemistry and catalysis in functional cavitands. Chem. Biol. 16, 255–264 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Zhang, G. & Mastalerz, M. Organic cage compounds – from shape-persistency to function. Chem. Soc. Rev. 43, 1934–1947 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Cook, T. R., Zheng, Y.-R. & Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 113, 734–777 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Fujita, M. et al. Self-assembly of ten molecules into nanometre-sized organic host frameworks. Nature 378, 469–471 (1995).

    CAS  ADS  Article  Google Scholar 

  7. 7.

    Ariga, K., Ito, H., Hill, J. P. & Tsukube, H. Molecular recognition: from solution science to nano/materials technology. Chem. Soc. Rev. 41, 5800–5835 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Galan, A. & Ballester, P. Stabilization of reactive species by supramolecular encapsulation. Chem. Soc. Rev. 45, 1720–1737 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. 48, 3418–3438 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    Yoshizawa, M. & Yamashina, M. Coordination-driven nanostructures with polyaromatic shells. Chem. Lett. 46, 163–171 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Mugridge, J. S., Bergman, R. G. & Raymond, K. N. 1H NMR chemical shift calculations as a probe of supramolecular host–guest geometry. J. Am. Chem. Soc. 133, 11205–11212 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Garcia-Borràs, M., Osuna, S., Luis, J. M., Swart, M. & Solà, M. The role of aromaticity in determining the molecular structure and reactivity of (endohedral metallo)fullerenes. Chem. Soc. Rev. 43, 5089–5105 (2014).

    Article  Google Scholar 

  13. 13.

    Nakamura, Y. et al. A directly fused tetrameric porphyrin sheet and its anomalous electronic properties that arise from the planar cyclooctatetraene core. J. Am. Chem. Soc. 128, 4119–4127 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    Peeks, M. D., Claridge, T. D. W. & Anderson, H. L. Aromatic and antiaromatic ring currents in a molecular nanoring. Nature 541, 200–203 (2017).

    CAS  ADS  Article  Google Scholar 

  15. 15.

    Breslow, R. Antiaromaticity. Acc. Chem. Res. 6, 393–398 (1973).

    CAS  Article  Google Scholar 

  16. 16.

    Nishinaga, T., Ohmae, T. & Iyoda, M. Recent studies on the aromaticity and antiaromaticity of planar cyclooctatetraene. Symmetry (Basel) 2, 76–97 (2010).

    Google Scholar 

  17. 17.

    Zeng, Z. et al. Pro-aromatic and anti-aromatic π-conjugated molecules: an irresistible wish to be diradicals. Chem. Soc. Rev. 44, 6578–6596 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Hensel, T., Anderson, N. N., Plesner, M. & Pittelkow, M. Synthesis of heterocyclic [8]circulenes and related structures. Synlett 27, 498–525 (2016).

    CAS  Google Scholar 

  19. 19.

    Reddy, B. K., Basavarajappa, A., Ambhore, M. D. & Anand, V. G. Isophlorinoids: the antiaromatic congeners of porphyrinoids. Chem. Rev. 117, 3420–3443 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Szyszko, B., Białek, M. J., Pacholska-Dudziak, E. & Latos-Grażyński, L. Flexible porphyrinoids. Chem. Rev. 117, 2839–2909 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Ito, T., Hayashi, Y., Shimizu, S., Shin, J.-Y., Kobayashi, N. & Shinokubo, H. Gram-scale synthesis of nickel(ii) norcorrole: the smallest antiaromatic porphyrinoid. Angew. Chem. Int. Ed. 51, 8542–8545 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    Deng, Z., Li, X., Stępień, M. & Chmielewski, P. J. Nitration of norcorrolatonickel(ii): first observation of a diatropic current in a system comprising a norcorrole ring. Chem. Eur. J. 22, 4231–4246 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Nozawa, R. et al. Stacked antiaromatic porphyrins. Nat. Commun. 7, 13620 (2016).

    CAS  ADS  Article  Google Scholar 

  24. 24.

    Yoshida, T. & Shinokubo, H. Direct amination of antiaromatic Niii norcorrole. Mater. Chem. Front. 1, 1853–1857 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Li, X., Meng, Y., Yi, P., Stępień, M. & Chmielewski, P. J. Pyridine-fused bis(norcorrole) through Hantzsch-type cyclization: enhancement of antiaromaticity by an aromatic bridge. Angew. Chem. Int. Ed. 56, 10810–10814 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Kawashima, H., Hiroto, S. & Shinokubo, H. Acid-mediated migration of bromide in an antiaromatic porphyrinoid: preparation of two regioisomeric Ni(ii) bromonorcorroles. J. Org. Chem. 82, 10425–10432 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Zhang, D., Ronson, T. K. & Nitschke, J. R. Functional capsules via subcomponent self-assembly. Acc. Chem. Res. 51, 2423–2436 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    Rizzuto, F. J., Wood, D. M., Ronson, T. K. & Nitschke, J. R. Tuning the redox properties of fullerene clusters within a metal−organic capsule. J. Am. Chem. Soc. 139, 11008–11011 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Povie, G., Segawa, Y., Nishihara, T., Miyauchi, Y. & Itami, K. Synthesis of a carbon nanobelt. Science 356, 172–175 (2017).

    CAS  ADS  Article  Google Scholar 

  30. 30.

    Brock-Nannestad, T. et al. Tetra-tert-butyltetraoxa[8]circulene and its unusual aggregation behaviour. Eur. J. Org. Chem., 6320–6325 (2011).

Download references


This study was supported by the European Research Council (695009) and the UK Engineering and Physical Sciences Research Council (EPSRC, EP/P027067/1). M.Y. acknowledges the Japan Society for the Promotion of Science (JSPS) for an Overseas Research Fellowship. R.L. was funded by a Fondation Wiener-Anspach postdoctoral fellowship. M.P. acknowledges support from the Danish Council for Independent Research (DFF 4181-00206). We thank the NMR service of the University of Cambridge Chemistry Department for NMR experiments. We thank Diamond Light Source for providing time on Beamline I19 (MT15768), and D. Allan and L. Saunders for assistance. The computations were performed at the Research Center for Computational Science, Okazaki, Japan. We appreciate discussions with H. Shinokubo (Nagoya University), M. Yoshizawa (Tokyo Institute of Technology) and T. Soya (Kyoto University).

Author information




M.Y. and J.R.N. designed the work, carried out research, analysed data and wrote the paper. Y.T. contributed to theoretical calculations. R.L. contributed to data analyses and calculations. T.K.R. contributed to X-ray crystallographic analysis. M.P. synthesized tetraoxa[8]circulene. J.R.N. is the principal investigator. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jonathan R. Nitschke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Preparation of diamine 2 from norcorrole 1.

When 1 was treated with 1,3-dibromo-5,5-dimethylhydantoin, inseparable mono-, di- and tribrominated products were obtained. As bromination randomly occurred at positions 3, 7, 12 and 16 (that is, adjacent to the mesityl moieties), the 3,12- and 3,16-substituted dibromonorcorroles trans-1a and cis-1a were obtained as the main products (Supplementary Figs. 1, 2). Subsequently, disubstituted trans-1b and cis-1b were obtained by Suzuki–Miyaura cross-coupling at 43% yield as a mixture of two regioisomers (Supplementary Figs. 3, 4). Finally, 3,12-substituted subcomponent 2 could be isolated as a single regioisomer at 46% yield following reduction of the NO2 groups and chromatography (Supplementary Figs. 5–9). Reagents and conditions: (i) 1,3-dibromo-5,5-dimethylhydantoin, CH2Cl2, −78 °C, 1 h, 94% (mixture of trans-1a, cis-1a and other brominated species). (ii) 4-Nitrophenylboronic acid pinacol ester, Pd(PPh3)4, K3PO4, dry THF, 70 °C, 1 h, 43% (mixture of trans-1b and cis-1b). (iii) SnCl2·H2O, dry THF, 70 °C, overnight, 46% (isolated 2).

Supplementary information

Supplementary Information

This file contains detailed additional synthetic procedures, host–guest studies, extended methods, full characterisation data, Supplementary Figures 1–74, Supplementary Tables 1–7 and additional references – see content page for details.

Supplementary Data

This file contains the crystallographic data for compound 3.

Video 1

Three-dimensional NICSiso grid within the antiaromatic-walled nanospace. Yellow, orange and red dots represent medium to strong magnetic deshielding regions (NICSiso = 3–6 for yellow, 6–9 for orange and >9 for red). Regions outside the walls and for NICSiso<3 are not shown for clarity. Calculation details are provided in the Supplementary Information.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamashina, M., Tanaka, Y., Lavendomme, R. et al. An antiaromatic-walled nanospace. Nature 574, 511–515 (2019).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.