Subducting carbon

Article metrics


A hidden carbon cycle exists inside Earth. Every year, megatons of carbon disappear into subduction zones, affecting atmospheric carbon dioxide and oxygen over Earth’s history. Here we discuss the processes that move carbon towards subduction zones and transform it into fluids, magmas, volcanic gases and diamonds. The carbon dioxide emitted from arc volcanoes is largely recycled from subducted microfossils, organic remains and carbonate precipitates. The type of carbon input and the efficiency with which carbon is remobilized in the subduction zone vary greatly around the globe, with every convergent margin providing a natural laboratory for tracing subducting carbon.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The deep carbon cycle.
Fig. 2: Carbon isotopes in subducted input, diamonds and arc volcanic gas.


  1. 1.

    Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. Lond. B 361, 931–950 (2006).

  2. 2.

    Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 298, 1–13 (2010). This article examines the global carbon budget and the mobility of carbon in the mantle.

  3. 3.

    Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl Acad. Sci. USA 112, E3997–E4006 (2015). This review summarizes carbon inputs and outputs to the mantle and emphasizes the potential for carbon to be efficiently recycled from the slab and potentially stored in the arc lithosphere.

  4. 4.

    Hirschmann, M. M. Comparative deep Earth volatile cycles: the case for C recycling from exosphere/mantle fractionation of major (H2O, C, N) volatiles and from H2O/Ce, CO2/Ba, and CO2/Nb exosphere ratios. Earth Planet. Sci. Lett. 502, 262–273 (2018). This paper sets carbon recycling in the context of other volatile components.

  5. 5.

    Galvez, M. E. & Pubellier, M. in Deep Carbon: Past to Present (eds Orcutt, B. N. et al.) 276–309 (Cambridge Univ. Press, 2019).

  6. 6.

    Lee, C. T. A., Jiang, H., Dasgupta, R. & Torres, M. in Deep Carbon: Past to Present (eds Orcutt, B. N. et al.) 313–357 (Cambridge Univ. Press, 2019).

  7. 7.

    Carn, S. A., Fioletov, V. E., McLinden, C. A., Li, C. & Krotkov, N. A. A decade of global volcanic SO2 emissions measured from space. Sci. Rep. 7, 44095 (2017).

  8. 8.

    Burton, M. R., Sawyer, G. M. & Granieri, D. Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75, 323–354 (2013).

  9. 9.

    Aiuppa, A. et al. Gas measurements from the Costa Rica–Nicaragua volcanic segment suggest possible along-arc variations in volcanic gas chemistry. Earth Planet. Sci. Lett. 407, 134–147 (2014).

  10. 10.

    Werner, C. et al. in Deep Carbon: Past to Present (eds Orcutt, B. N. et al.) 188–236 (Cambridge Univ. Press, 2019).

  11. 11.

    Aiuppa, A., Fischer, T. P., Plank, T. & Bani, P. CO2 flux emissions from the Earth’s most actively degassing volcanoes, 2005–2015. Sci. Rep. 9, 5442 (2019).

  12. 12.

    Friedlingstein, P. et al. Update on CO2 emissions. Nat. Geosci. 3, 811–812 (2010).

  13. 13.

    Hirschmann, M. M. & Dasgupta, R. The H/C ratios of Earth’s near-surface and deep reservoirs and consequences for deep Earth volatile cycles. Chem. Geol. 262, 4–16 (2009).

  14. 14.

    Duncan, M. S. & Dasgupta, R. Rise of Earth’s atmospheric oxygen controlled by efficient subduction of organic carbon. Nat. Geosci. 10, 387–392 (2017).

  15. 15.

    Evans, K. A. The redox budget of subduction zones. Earth Sci. Rev. 113, 11–32 (2012).

  16. 16.

    Edmond, J. M. & Huh, Y. Non-steady state carbonate recycling and implications for the evolution of atmospheric PCO2. Earth Planet. Sci. Lett. 216, 125–139 (2003).

  17. 17.

    Kent, D. V. & Muttoni, G. Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt. Clim. Past 9, 525–546 (2013).

  18. 18.

    Krissansen-Totton, J. & Catling, D. C. Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model. Nat. Commun. 8, 15423 (2017).

  19. 19.

    Müller, R. D., & Dutkiewicz, A. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities. Sci Adv. 4, eaaq0500 (2018).

  20. 20.

    Volk, T. Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial. Nature 337, 637–640 (1989).

  21. 21.

    Johnston, F. K., Turchyn, A. V. & Edmonds, M. Decarbonation efficiency in subduction zones: implications for warm Cretaceous climates. Earth Planet. Sci. Lett. 303, 143–152 (2011).

  22. 22.

    Kelemen, P. B. et al. Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage. Annu. Rev. Earth Planet. Sci. 39, 545–576 (2011).

  23. 23.

    Alt, J. C. et al. The role of serpentinites in cycling of carbon and sulfur: seafloor serpentinization and subduction metamorphism. Lithos 178, 40–54 (2013). This review describes the carbon cycle driven by serpentinization and subduction.

  24. 24.

    Tonarini, S., Leeman, W. P. & Leat, P. T. Subduction erosion of forearc mantle wedge implicated in the genesis of the South Sandwich Island (SSI) arc: evidence from boron isotope systematics. Earth Planet. Sci. Lett. 301, 275–284 (2011).

  25. 25.

    Grevemeyer, I., Ranero, C. R. & Ivandic, M. Structure of oceanic crust and serpentinization at subduction trenches. Geosphere 14, 395–418 (2018).

  26. 26.

    Parai, R. & Mukhopadhyay, S. How large is the subducted water flux? New constraints on mantle regassing rates. Earth Planet. Sci. Lett. 317–318, 396–406 (2012).

  27. 27.

    Cai, C., Wiens, D. A., Shen, W. & Eimer, M. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data. Nature 563, 389 (2018).

  28. 28.

    Naif, S., Key, K., Constable, S. & Evans, R. L. Water-rich bending faults at the Middle America Trench. Geochem. Geophys. Geosyst. 16, 2582–2597 (2015).

  29. 29.

    Shilobreeva, S., Martinez, I., Busigny, V., Agrinier, P. & Laverne, C. Insights into C and H storage in the altered oceanic crust: results from ODP/IODP Hole 1256D. Geochim. Cosmochim. Acta 75, 2237–2255 (2011).

  30. 30.

    Li, K., Li, L., Pearson, D. G. & Stachel, T. Diamond isotope compositions indicate altered igneous oceanic crust dominates deep carbon recycling. Earth Planet. Sci. Lett. 516, 190–201 (2019). This paper provides recent data on the carbon content and isotopic composition of AOC and considers the subducted flux and its contribution to diamonds.

  31. 31.

    Alt, J. C. & Teagle, D. A. H. The uptake of carbon during alteration of ocean crust. Geochim. Cosmochim. Acta 63, 1527–1535 (1999).

  32. 32.

    Gillis, K. M. & Coogan, L. A. Secular variation in carbon uptake into the ocean crust. Earth Planet. Sci. Lett. 302, 385–392 (2011).

  33. 33.

    Hayes, J. M., Strauss, H. & Kaufman, A. J. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 161, 103–125 (1999).

  34. 34.

    Clift, P. D. A revised budget for Cenozoic sedimentary carbon subduction. Rev. Geophys. 55, 97–125 (2017).

  35. 35.

    Pälike, H. et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488, 609 (2012).

  36. 36.

    Van Andel, T. H. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet. Sci. Lett. 26, 187–194 (1975).

  37. 37.

    Syracuse, E. M. & Abers, G. A. Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem. Geophys. Geosyst. 7, Q05017 (2006).

  38. 38.

    Plank, T. in Treatise on Geochemistry 2nd edn, Vol. 4 (eds Holland, H. D. & Turekian, K. K.) 607–629 (Elsevier, 2014).

  39. 39.

    Galy, V. et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450, 407–410 (2007).

  40. 40.

    D’Hondt, S. et al. Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments. Nat. Geosci. 8, 299–304 (2015).

  41. 41.

    House, B. M., Bebout, G. E. & Hilton, D. R. Carbon cycling at the Sunda margin, Indonesia: a regional study with global implications. Geology 47, 483–486 (2019).

  42. 42.

    Regalla, C., Fisher, D. M., Kirby, E. & Furlong, K. P. Relationship between outer forearc subsidence and plate boundary kinematics along the Northeast Japan convergent margin. Geochem. Geophys. Geosyst. 14, 5227–5243 (2013).

  43. 43.

    Freundt, A. et al. Volatile (H2O, CO2, Cl, S) budget of the Central American subduction zone. Int. J. Earth Sci. 103, 2101–2127 (2014).

  44. 44.

    Gerya, T. V., Stoeckhert, B. & Perchuk, A. L. Exhumation of high-pressure metamorphic rocks in a subduction channel – a numerical simulation. Tectonics 21, 1056 (2002).

  45. 45.

    Gerya, T. V. & Meilick, F. I. Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. J. Metamorph. Geol. 29, 7–31 (2011).

  46. 46.

    Fryer, P., Ambos, E. L. & Hussong, D. M. Origin and emplacement of Mariana forearc seamounts. Geology 13, 774–777 (1985).

  47. 47.

    Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 411, 293 (2001).

  48. 48.

    Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling. Earth Planet. Sci. Lett. 189, 19–29 (2001).

  49. 49.

    Gorman, P. J., Kerrick, D. M. & Connolly, J. A. D. Modeling open system metamorphic decarbonation of subducting slabs. Geochem. Geophys. Geosyst. 7, Q04007 (2006).

  50. 50.

    Ague, J. J. & Nicolescu, S. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nat. Geosci. 7, 355–360 (2014). This paper provides evidence for carbon transport in subduction zone fluids by dissolution of CaCO 3 versus metamorphic decarbonation.

  51. 51.

    Galvez, M. E., Connolly, J. A. D. & Manning, C. E. Implications for metal and volatile cycles from the pH of subduction zone fluids. Nature 539, 420–424 (2016).

  52. 52.

    Galvez, M. E., Manning, C. E., Connolly, J. A. D. & Rumble, D. The solubility of rocks in metamorphic fluids: a model for rock-dominated conditions to upper mantle pressure and temperature. Earth Planet. Sci. Lett. 430, 486–498 (2015).

  53. 53.

    Gorce, J. S., Caddick, M. J. & Bodnar, R. J. Thermodynamic constraints on carbonate stability and carbon volatility during subduction. Earth Planet. Sci. Lett. 519, 213–222 (2019).

  54. 54.

    Sverjensky, D. A. & Huang, F. Diamond formation due to a pH drop during fluid–rock interactions. Nat. Commun. 6, 8702 (2015).

  55. 55.

    Tsuno, K. & Dasgupta, R. Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5–3.0 GPa and deep cycling of sedimentary carbon. Contrib. Mineral. Petrol. 161, 743–763 (2011).

  56. 56.

    Dasgupta, R., Hirschmann, M. M. & Withers, A. C. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet. Sci. Lett. 227, 73–85 (2004).

  57. 57.

    Hammouda, T. & Keshav, S. Melting in the mantle in the presence of carbon: review of experiments and discussion on the origin of carbonatites. Chem. Geol. 418, 171–188 (2015).

  58. 58.

    Grassi, D. & Schmidt, M. W. The melting of carbonated pelites from 70 to 700 km depth. J. Petrol. 52, 765–789 (2011).

  59. 59.

    Martin, L. A. & Hermann, J. Experimental phase relations in altered oceanic crust: implications for carbon recycling at subduction zones. J. Petrol. 59, 299–320 (2018).

  60. 60.

    Cooper, L. B. et al. Global variations in H2O/Ce: 1. Slab surface temperatures beneath volcanic arcs. Geochem. Geophys. Geosyst. 13, Q03024 (2012).

  61. 61.

    Poli, S. Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids. Nat. Geosci. 8, 633–636 (2015).

  62. 62.

    van Keken, P. E., Kiefer, B. & Peacock, S. M. High resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem. Geophys. Geosyst. 3, 1056 (2002).

  63. 63.

    Thomson, A. R., Walter, M. J., Kohn, S. C. & Brooker, R. A. Slab melting as a barrier to deep carbon subduction. Nature 529, 76–79 (2016). This paper presents new results on slab melting below the mantle transition zone, which support a new reaction–transport model of sub-lithospheric diamond formation.

  64. 64.

    Sun, C. & Dasgupta, R. Slab–mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle. Earth Planet. Sci. Lett. 506, 38–52 (2019).

  65. 65.

    Kono, Y. et al. Ultralow viscosity of carbonate melts at high pressures. Nat. Commun. 5, 5091 (2014).

  66. 66.

    Stagno, V. et al. in Carbon in Earth (eds Manning, C. E. et al.) (American Geophysical Union, 2019).

  67. 67.

    O’Neill, H. S. C., Rubie, D. C., Canil, D., Geiger, C. & Ross, C. R. in Evolution of the Earth and Planets Vol. 74 (eds Takahashi, E. et al.) 73–88 (American Geophysical Union, Washington, 1993).

  68. 68.

    Rohrbach, A. et al. Metal saturation in the upper mantle. Nature 449, 456–458 (2007).

  69. 69.

    Frost, D. J. et al. Experimental evidence for the existence of iron-rich metal in Earth’s lower mantle. Nature 428, 409–412 (2004).

  70. 70.

    Frost, D. J. & McCammon, C. A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).

  71. 71.

    Ballhaus, C. Is the upper mantle metal-saturated? Earth Planet. Sci. Lett. 132, 75–86 (1995).

  72. 72.

    Shirey, S. B. et al. Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem. 75, 355–421 (2013).

  73. 73.

    Smith, E. M. et al. Blue boron-bearing diamonds from Earth’s lower mantle. Nature 560, 84 (2018).

  74. 74.

    Cartigny, P. Stable isotopes and the origin of diamond. Elements 1, 79–84 (2005).

  75. 75.

    Shirey, S. B. et al. Diamonds and the mantle geodynamics of carbon: deep mantle carbon evolution from the diamond record. In Deep Carbon: Past to Present (eds Orcutt, B. N. et al.) 89–128 (Cambridge Univ. Press, 2019). This review provides the most up-to-date information on diamond formation and links to subduction.

  76. 76.

    Thomson, A. R. et al. Trace element composition of silicate inclusions in sub-lithospheric diamonds from the Juina-5 kimberlite: evidence for diamond growth from slab melts. Lithos 265, 108–124 (2016b).

  77. 77.

    Burnham, A. D. et al. Stable isotope evidence for crustal recycling as recorded by superdeep diamonds. Earth Planet. Sci. Lett. 432, 374–380 (2015).

  78. 78.

    Dasgupta, R. et al. Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature 493, 211–215 (2013).

  79. 79.

    Wallace, P. J. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140, 217–240 (2005).

  80. 80.

    Wallace, P., Plank, T., Edmonds, M. & Hauri, E. H. in The Encyclopedia of Volcanoes 2nd edn Vol. I (eds. Sigurdsson H.) 163–183 (Elsevier, 2015).

  81. 81.

    Moore, L. R. et al. Bubbles matter: an assessment of the contribution of vapor bubbles to melt inclusion volatile budgets. Am. Mineral. 100, 806–823 (2015).

  82. 82.

    Mironov, N. et al. Quantification of the CO2 budget and H2O–CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure. Earth Planet. Sci. Lett. 425, 1–11 (2015).

  83. 83.

    Aster, E. M. et al. Reconstructing CO2 concentrations in basaltic melt inclusions using Raman analysis of vapor bubbles. J. Volcanol. Geotherm. Res. 323, 148–162 (2016).

  84. 84.

    James, E. R., Manga, M. & Rose, T. P. CO2 degassing in the Oregon Cascades. Geology 27, 823–826 (1999).

  85. 85.

    Chiodini, G. et al. Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems. J. Geophys. Res. 110, B08204 (2005).

  86. 86.

    Schwandner, F. M. et al. Spaceborne detection of localized carbon dioxide sources. Science 358, eaam5782 (2017).

  87. 87.

    Aiuppa, A. et al. Patterns in the recent 2007–2008 activity of Mount Etna volcano investigated by integrated geophysical and geochemical observations. Geochem. Geophys. Geosyst. 11, Q09008 (2010).

  88. 88.

    de Moor, J. M. et al. Turmoil at Turrialba Volcano (Costa Rica): degassing and eruptive processes inferred from high-frequency gas monitoring. J. Geophys. Res. 121, 5761–5775 (2016).

  89. 89.

    Aiuppa, A., Fischer, T. P., Plank, T., Robidoux, P. & Di Napoli, R. Along-arc, inter-arc and arc-to-arc variations in volcanic gas CO2/ST ratios reveal dual source of carbon in arc volcanism. Earth Sci. Rev. 168, 24–47 (2017). This paper provides an example of the potential power of MultiGas data from volcanic vents to constrain CO 2 sources in the subduction zone.

  90. 90.

    Lee, C.-T. A. et al. Continental arc–island arc fluctuations, growth of crustal carbonates, and long-term climate change. Geosphere 9, 21–36 (2013).

  91. 91.

    de Moor, J. M. et al. A new sulfur and carbon degassing inventory for the Southern Central American Volcanic Arc: the importance of accurate time-series data sets and possible tectonic processes responsible for temporal variations in arc-scale volatile emissions. Geochem. Geophys. Geosyst. 18, 4437–4468 (2017).

  92. 92.

    Mason, E., Edmonds, M. & Turchyn, A. V. Remobilization of crustal carbon may dominate volcanic arc emissions. Science 357, 290–294 (2017). This paper reviews carbon isotopic compositions for volcanic gases globally and discusses crustal versus subducted sources of volcanic carbon and the implications for the carbon cycle.

  93. 93.

    Le Voyer, M. et al. Carbon fluxes and primary magma CO2 contents along the global mid-ocean ridge system. Geochem. Geophys. Geosyst. 20, 1387–1424 (2019).

  94. 94.

    Fischer, T. P. & Lopez, T. M. First airborne samples of a volcanic plume for δ13C of CO2 determinations. Geophys. Res. Lett. 43, 3272–3279 (2016).

  95. 95.

    Rizzo, A. L. et al. Real-time measurements of the concentration and isotope composition of atmospheric and volcanic CO2 at Mount Etna (Italy). Geophys. Res. Lett. 41, 2382–2389 (2014).

  96. 96.

    Barry, P. H. et al. Forearc carbon sink reduces long-term volatile recycling into the mantle. Nature 568, 487–492 (2019); correction 568, E7 (2019).

  97. 97.

    Lawver, L. A. & Dick, H. J. The American-Antarctic Ridge. J. Geophys. Res. 88, 8193–8202 (1983).

  98. 98.

    Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 183, 73–90 (2010).

  99. 99.

    Turner, S. J. & Langmuir, C. H. What processes control the chemical compositions of arc front stratovolcanoes? Geochem. Geophys. Geosyst. 16, 1865–1893 (2015).

  100. 100.

    Zimmer, M. M. et al. The role of water in generating the calc-alkaline trend: new volatile data for Aleutian magmas and a new tholeiitic index. J. Petrol. 51, 2411–2444 (2010).

  101. 101.

    Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H. & Wallace, P. J. Why do mafic arc magmas contain 4 wt% water on average? Earth Planet. Sci. Lett. 364, 168–179 (2013).

  102. 102.

    Alt, J. C. Stable isotopic composition of upper oceanic crust formed at a fast spreading ridge, ODP Site 801. Geochem. Geophys. Geosyst. 4, 8908 (2003).

  103. 103.

    Galy, V., France-Lanord, C., Peucker-Ehrenbrink, B. & Huyghe, P. Sr–Nd–Os evidence for a stable erosion regime in the Himalaya during the past 12 Myr. Earth Planet. Sci. Lett. 290, 474–480 (2010).

  104. 104.

    Thomson, A. R. et al. Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): constraints from carbon isotopes and inclusion compositions. Contrib. Mineral. Petrol. 168, 1081 (2014).

  105. 105.

    Jarrard, R. D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem. Geophys. Geosyst. 4, 8905 (2003).

  106. 106.

    Dutkiewicz, A., Müller, R. D., Cannon, J., Vaughan, S. & Zahirovic, S. Sequestration and subduction of deep-sea carbonate in the global ocean since the Early Cretaceous. Geology 47, 91–94 (2018).

  107. 107.

    Tucker, J. M., Mukhopadhyay, S. & Gonnermann, H. M. Reconstructing mantle carbon and noble gas contents from degassed mid-ocean ridge basalts. Earth Planet. Sci. Lett. 496, 108–119 (2018).

  108. 108.

    Sano, Y. & Marty, B. Origin of carbon in fumarolic gas from island arcs. Chem. Geol. 119, 265–274 (1995).

  109. 109.

    Hilton, D. R., Fischer, T. P. & Marty, B. Noble gases and volatile recycling at subduction zones. Rev. Mineral. Geochem. 47, 319–370 (2002).

  110. 110.

    Kagoshima, T. et al. Sulphur geodynamic cycle. Sci. Rep. 5, 8330 (2015).

  111. 111.

    Gonnermann, H. M. & Mukhopadhyay, S. Non-equilibrium degassing and a primordial source for helium in ocean-island volcanism. Nature 449, 1037–1040 (2007).

Download references


This work was supported by the Deep Carbon Observatory. We thank the late E. Hauri, whose leadership and vision put into motion much of the research on carbon reservoirs and fluxes and on volcanic gas and magma chemistry reported here. We thank A. Malinverno, A. Thomson, S. Shirey, O. Tschauener, M. Walter, A. Aiuppa, T. Fischer, E. Cottrell and D. Kent for discussions, and J. M. de Moor and D. Muller for their comments.

Author information

Both T.P. and C.E.M. contributed to the structure, content and message of this review.

Correspondence to Terry Plank.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks J. Maarten de Moor, Dietmar Muller and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Plank, T., Manning, C.E. Subducting carbon. Nature 574, 343–352 (2019) doi:10.1038/s41586-019-1643-z

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.