Real-time discrimination of earthquake foreshocks and aftershocks

Article metrics

Abstract

Immediately after a large earthquake, the main question asked by the public and decision-makers is whether it was the mainshock or a foreshock to an even stronger event yet to come. So far, scientists can only offer empirical evidence from statistical compilations of past sequences, arguing that normally the aftershock sequence will decay gradually whereas the occurrence of a forthcoming larger event has a probability of a few per cent. Here we analyse the average size distribution of aftershocks of the recent Amatrice–Norcia and Kumamoto earthquake sequences, and we suggest that in many cases it may be possible to discriminate whether an ongoing sequence represents a decaying aftershock sequence or foreshocks to an upcoming large event. We propose a simple traffic light classification to assess in real time the level of concern about a subsequent larger event and test it against 58 sequences, achieving a classification accuracy of 95 per cent.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Time–space analysis of b values for the Amatrice–Norcia sequence.
Fig. 2: Time–space analysis of b values for the Kumamoto sequence.
Fig. 3: Frequency–magnitude distributions for the Tohoku case study.
Fig. 4: The foreshock traffic light system.
Fig. 5: Performance analysis of the proposed foreshock traffic light system.

Data and code availability

The datasets generated and analysed during the current study, as well as the Matlab codes written for the analysis, are available at https://doi.org/10.3929/ethz-b-000357449.

References

  1. 1.

    Jordan, T. H. et al. Operational earthquake forecasting state of knowledge and guidelines for utilization. Ann. Geophys. 54, 315–391 (2011).

  2. 2.

    Lippiello, E., Giacco, F., Marzocchi, W., Godano, C. & de Arcangelis, L. Statistical features of foreshocks in instrumental and ETAS catalogs. Pure Appl. Geophys. 174, 1679–1697 (2017).

  3. 3.

    Reasenberg, P. A. & Jones, L. M. California aftershock hazard forecast. Science 247, 345–346 (1990).

  4. 4.

    Roeloffs, E. & Goltz, J. The California earthquake advisory plan: a history. Seismol. Res. Lett. 88, 784–797 (2017).

  5. 5.

    Field, E. H. et al. The potential uses of operational earthquake forecasting. Seismol. Res. Lett. 87, 313–322 (2016).

  6. 6.

    Zechar, J. D., Marzocchi, W. & Wiemer, S. Operational earthquake forecasting in Europe: progress, despite challenges. Bull. Earthquake Eng. 14, 2459–2469 (2016).

  7. 7.

    Ogata, Y. Statistical models for earthquake occurrences and residual analysis for point processes. J. Am. Stat. Assoc. 83, 9–27 (1988).

  8. 8.

    Ogata, Y. Space-time point-process models for earthquake occurrences. Ann. Inst. Stat. Math. 50, 379–402 (1998).

  9. 9.

    Gerstenberger, M. C., Wiemer, S., Jones, L. M. & Reasenberg, P. A. Real-time forecasts of tomorrow’s earthquakes in California. Nature 435, 328–331 (2005).

  10. 10.

    Parsons, T. et al. Stress-based aftershock forecasts made within 24 h postmain shock: expected north San Francisco Bay area seismicity changes after the 2014 M = 6.0 West Napa earthquake. Geophys. Res. Lett. 41, 8792–8799 (2014).

  11. 11.

    Stein, R. Earthquake conversations. Sci. Am. 288, 72–79 (2003).

  12. 12.

    Woessner, J. et al. A retrospective comparative forecast test on the 1992 Landers sequence. J. Geophys. Res. 116, B05305 (2011).

  13. 13.

    van Stiphout, T., Wiemer, S. & Marzocchi, W. Are short-term evacuations warranted? Case of the 2009 L’Aquila earthquake. Geophys. Res. Lett. 37, L06306 (2010).

  14. 14.

    Gulia, L., Tormann, T., Wiemer, S., Herrmann, M. & Seif, S. Short-term probabilistic earthquake risk assessment considering time-dependent b values. Geophys. Res. Lett. 43, 1100–1108 (2016).

  15. 15.

    Brodsky, E. E. & Lay T. Recognizing foreshocks from the 1 April 2014 Chile earthquake. Science 344, 700–702 (2014).

  16. 16.

    Bouchon, M., Durand, V., Marsan, D., Karabulut, H. & Schmittbuhl, J. The long precursory phase of most large interplate earthquakes. Nat. Geosci. 6, 299–302 (2013).

  17. 17.

    Ellsworth, W. L. & Bulut, F. Nucleation of the 1999 Izmit earthquake by a triggered cascade of foreshocks. Nat. Geosci. 11, 531–535 (2018).

  18. 18.

    Gutenberg, B. & Richter, C. F. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 34, 185–188 (1944).

  19. 19.

    Ishimoto, M. & Iida, I. Observations of earthquakes registered with the microseismograph constructed recently. Bull. Earthquake Res. Inst. Univ. Tokyo 17, 443–478 (1936).

  20. 20.

    Goebel, T. H. W., Schorlemmer, D., Becker, T. W., Dresen, G. & Sammis, C. G. Acoustic emissions document stress changes over many seismic cycles in stick-slip experiments. Geophys. Res. Lett. 40, 2049–2054 (2013).

  21. 21.

    Amitrano, D. Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value. J. Geophys. Res. 108, 1–15 (2003).

  22. 22.

    Scholz, C. H. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull. Seismol. Soc. Am. 58, 399–415 (1968).

  23. 23.

    Schorlemmer, D., Wiemer, S. & Wyss, M. Variations in earthquake-size distribution across different stress regimes. Nature 437, 539–542 (2005).

  24. 24.

    Gulia, L. et al. The effect of a mainshock on the size distribution of the aftershocks. Geophys. Res. Lett. 45, 13277–13287 (2005).

  25. 25.

    Helmstetter, A. Comparison of short-term and time-independent earthquake forecast models for southern California. Bull. Seismol. Soc. Am. 96, 90–106 (2006).

  26. 26.

    Vannucci, G., Gasperini, P., Lolli, B. & Gulia, L. Fast characterization of sources of recent Italian earthquakes from macroseismic intensities. Tectonophysics 750, 70–92 (2019).

  27. 27.

    Gasperini, P., Lolli, B. & Vannucci, G. Empirical calibration of local magnitude data sets versus moment magnitude in Italy. Bull. Seismol. Soc. Am. 103, 2227–2246 (2013).

  28. 28.

    Wiemer, S. & Wyss, M. Mapping the frequency-magnitude distribution in asperities: an improved technique to calculate recurrence times? J. Geophys. Res. 102, 15115–15128 (1997).

  29. 29.

    Japan Meteorological Agency. JMA catalogue http://www.data.jma.go.jp/svd/eqev/data/bulletin/index_e.html.

  30. 30.

    Earthquake Research Committee. Evaluation of the 2016 Kumamoto Earthquakes (ERC, 2016); https://www.jishin.go.jp/main/chousa/16may_kumamoto2/index-e.htm.

  31. 31.

    Nanjo, K.Z. & Yoshida, A. Anomalous decrease in relatively large shocks and increase in the p and b values preceding the April 16, 2016, M 7.3 earthquake in Kumamoto, Japan. EPS 69, 13 (2017).

  32. 32.

    Omi, T. et al. Implementation of a real-time system for automatic aftershock forecasting in Japan. Seismol. Res. Lett. 90, 242–250 (2019).

  33. 33.

    Tormann, T., Enescu, B., Woessner, J. & Wiemer, S. Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake. Nat. Geosci. 8, 152–158 (2015).

  34. 34.

    Gomber, J. Unsettled earthquake nucleation. Nat. Geosci. 11, 463–464 (2018).

  35. 35.

    Mignan, A. The debate on the prognostic value of earthquake foreshocks: a meta-analysis. Sci. Rep. 4, 4099 (2014).

  36. 36.

    Tape, C. et al. Earthquake nucleation and fault slip complexity in the lower crust of central Alaska. Nat. Geosci. 11, 536–541 (2018); author correction 11, 615 (2018).

  37. 37.

    Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 82, 1018–1040 (1992).

  38. 38.

    European Commission. A Strategy for Europe on Nutrition, Overweight and Obesity Related Health Issues. White Paper COM (2007) 279 (European Commission, 2007); https://ec.europa.eu/health/ph_determinants/life_style/nutrition/documents/nutrition_wp_en.pdf.

  39. 39.

    Department of Health. Information for a Healthy New York: Asthma Action Plan (New York State Department of Health, 2002); www.health.state.ny.us/diseases/asthma/pdf/4850.pdf.

  40. 40.

    Bommer, J. J. et al. Control of hazard due to seismicity induced by a hot fractured rock geothermal project. Eng. Geol. 83, 287–306 (2006).

  41. 41.

    Mignan, A., Broccardo, M., Wiemer, S. & Giardini, D. Induced seismicity closed-form traffic light system for actuarial decision-making during deep fluid injections. Sci. Rep. 7, 13607 (2017).

  42. 42.

    Li, Z. F., Meier, M. A., Hauksson, E., Zhan, Z. W. & Andrews, J. Machine learning seismic wave discrimination: application to earthquake early warning. Geophys. Res. Lett. 45, 4773–4779 (2018).

  43. 43.

    Shelly, D. R. A 15 year catalog of more than 1 million low-frequency earthquakes: tracking tremor and slip along the deep San Andreas Fault. J. Geophys. Res. Solid Earth 122, 3739–3753 (2017).

  44. 44.

    Jordan, T. H. Earthquake predictability, brick by brick. Seismol. Res. Lett. 77, 3–6 (2006).

  45. 45.

    Schorlemmer, D. et al. The collaboratory for the study of earthquake predictability: achievements and priorities. Seismol. Res. Lett. 89, 1305–1313 (2018).

  46. 46.

    Wells, D. L. & Coppersmith, K. J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 84, 974–1002 (1994).

  47. 47.

    Shi, Y. & Bolt, B. A. The standard error of the magnitude-frequency b value. Bull. Seismol. Soc. Am. 72, 1677–1687 (1982).

  48. 48.

    Dziewonski, A. M., Chou, T. A. & Woodhouse, J. H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. 86, 2825–2852 (1981).

  49. 49.

    Ekström, G., Nettles, M. & Dziewoński, A. M. The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 200–201, 1–9 (2012).

  50. 50.

    Wiemer, S. & Wyss, M. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull. Seismol. Soc. Am. 90, 859–869 (2000).

  51. 51.

    Woessner, J. & Wiemer, S. Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bull. Seismol. Soc. Am. 95, 684–698 (2005).

  52. 52.

    Tormann, T., Wiemer, S. & Mignan, A. Systematic survey of high-resolution b value imaging along Californian faults: inference on asperities. J. Geophys. Res. 119, 2029–2054 (2014).

Download references

Acknowledgements

The figures were produced with the Generic Mapping Tool (http://gmt.soest.hawaii.edu). b-value maps were created with ZMAP (http://www.seismo.ethz.ch/en/research-and-teaching/products-software/software/ZMAP/).

Author information

L.G. and S.W. conceived the analysis method and wrote the paper. L.G. performed the data analysis and created the figures.

Correspondence to Laura Gulia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.