One neuron versus deep learning in aftershock prediction

Matters Arising to this article was published on 02 October 2019

The Original Article was published on 29 August 2018

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Prediction of aftershock spatial patterns based on stress features.
Fig. 2: Prediction of aftershock spatial patterns using the distance, r, and the slip, d.

Data availability

The data that support the findings of this study are available from the SRCMOD fault rupture catalogue (http://equake-rc.info/SRCMOD), the International Seismological Centre earthquake catalogue (http://www.isc.ac.uk/iscgem) and from DeVries et al.1 at https://github.com/phoebemrdevries/Learning-aftershock-location-patterns.

Code availability

Original codes by DeVries et al.1 are available at https://github.com/phoebemrdevries/Learning-aftershock-location-patterns. An R code including the distance–slip feature definition and logistic regression training/testing is available from the corresponding authors on request.

References

  1. 1.

    DeVries, P. M. H., Viégas, F., Wattenberg, M. & Meade, B. J. Deep learning of aftershock patterns following large earthquakes. Nature 560, 632–634 (2018).

    ADS  CAS  Article  Google Scholar 

  2. 2.

    Meade, B. J., DeVries, P. M. R., Faller, J., Viegas, F. & Wattenberg, M. What is better than Coulomb failure stress? A ranking of scalar static stress triggering mechanisms from 105 mainshock-aftershock pairs. Geophys. Res. Lett. 44, 11,409–11,416 (2017).

    Article  Google Scholar 

  3. 3.

    Reasenberg, P. A. & Jones, L. M. Earthquake hazard after a mainshock in California. Science 243, 1173–1176 (1989).

    ADS  CAS  Article  Google Scholar 

  4. 4.

    Reasenberg, P. A. & Jones, L. M. Earthquake aftershocks: update. Science 265, 1251–1252 (1994).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    Gerstenberger, M. C., Wiemer, S., Jones, L. M. & Reasenberg, P. A. Real-time forecast of tomorrow’s earthquakes in California. Nature 435, 328–331 (2005).

    ADS  CAS  Article  Google Scholar 

  6. 6.

    Felzer, K. R. & Brodsky, E. E. Decay of aftershock density with distance indicates triggering by dynamic stress. Nature 441, 735–738 (2006).

    ADS  CAS  Article  Google Scholar 

  7. 7.

    Richards-Dinger, K., Stein, R. S. & Toda, S. Decay of aftershock density with distance does not indicate triggering by dynamic stress. Nature 467, 583–586 (2010).

    ADS  CAS  Article  Google Scholar 

  8. 8.

    Mignan, A. Utsu aftershock productivity law explained from geometric operations on the permanent static stress field of mainshocks. Nonlinear Process. Geophys. 25, 241–250 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Steacy, S., Gerstenberger, M., Williams, C., Rhoades, D. & Christophersen, A. A new hybrid Coulomb/statistical model for forecasting aftershock rates. Geophys. J. Int. 196, 918–923 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Cattania, C., Hainzl, S., Wang, L., Roth, F. & Enescu, B. Propagation of Coulomb stress uncertainties in physics-based aftershock models. J. Geophys. Res. Solid Earth 119, 7846–7864 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Cattania, C. et al. The forecasting skill of physics-based seismicity models during the 2010–2012 Canterbury, New Zealand, earthquake sequence. Seismol. Res. Lett. 89, 1238–1250 (2018).

    Article  Google Scholar 

  12. 12.

    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  14. 14.

    Kong, Q. et al. Machine learning in seismology: turning data into insights. Seismol. Res. Lett. 90, 3–14 (2019).

    Article  Google Scholar 

  15. 15.

    Beroza, G. C. Aftershock forecasts turn to AI. Nature 560, 556–557 (2018).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

A.M. and M.B. contributed equally to the design and analysis of this study.

Corresponding authors

Correspondence to Arnaud Mignan or Marco Broccardo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mignan, A., Broccardo, M. One neuron versus deep learning in aftershock prediction. Nature 574, E1–E3 (2019). https://doi.org/10.1038/s41586-019-1582-8

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing