One neuron versus deep learning in aftershock prediction

Article metrics

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Prediction of aftershock spatial patterns based on stress features.
Fig. 2: Prediction of aftershock spatial patterns using the distance, r, and the slip, d.

Data availability

The data that support the findings of this study are available from the SRCMOD fault rupture catalogue (, the International Seismological Centre earthquake catalogue ( and from DeVries et al.1 at

Code availability

Original codes by DeVries et al.1 are available at An R code including the distance–slip feature definition and logistic regression training/testing is available from the corresponding authors on request.


  1. 1.

    DeVries, P. M. H., Viégas, F., Wattenberg, M. & Meade, B. J. Deep learning of aftershock patterns following large earthquakes. Nature 560, 632–634 (2018).

  2. 2.

    Meade, B. J., DeVries, P. M. R., Faller, J., Viegas, F. & Wattenberg, M. What is better than Coulomb failure stress? A ranking of scalar static stress triggering mechanisms from 105 mainshock-aftershock pairs. Geophys. Res. Lett. 44, 11,409–11,416 (2017).

  3. 3.

    Reasenberg, P. A. & Jones, L. M. Earthquake hazard after a mainshock in California. Science 243, 1173–1176 (1989).

  4. 4.

    Reasenberg, P. A. & Jones, L. M. Earthquake aftershocks: update. Science 265, 1251–1252 (1994).

  5. 5.

    Gerstenberger, M. C., Wiemer, S., Jones, L. M. & Reasenberg, P. A. Real-time forecast of tomorrow’s earthquakes in California. Nature 435, 328–331 (2005).

  6. 6.

    Felzer, K. R. & Brodsky, E. E. Decay of aftershock density with distance indicates triggering by dynamic stress. Nature 441, 735–738 (2006).

  7. 7.

    Richards-Dinger, K., Stein, R. S. & Toda, S. Decay of aftershock density with distance does not indicate triggering by dynamic stress. Nature 467, 583–586 (2010).

  8. 8.

    Mignan, A. Utsu aftershock productivity law explained from geometric operations on the permanent static stress field of mainshocks. Nonlinear Process. Geophys. 25, 241–250 (2018).

  9. 9.

    Steacy, S., Gerstenberger, M., Williams, C., Rhoades, D. & Christophersen, A. A new hybrid Coulomb/statistical model for forecasting aftershock rates. Geophys. J. Int. 196, 918–923 (2014).

  10. 10.

    Cattania, C., Hainzl, S., Wang, L., Roth, F. & Enescu, B. Propagation of Coulomb stress uncertainties in physics-based aftershock models. J. Geophys. Res. Solid Earth 119, 7846–7864 (2014).

  11. 11.

    Cattania, C. et al. The forecasting skill of physics-based seismicity models during the 2010–2012 Canterbury, New Zealand, earthquake sequence. Seismol. Res. Lett. 89, 1238–1250 (2018).

  12. 12.

    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

  13. 13.

    Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015).

  14. 14.

    Kong, Q. et al. Machine learning in seismology: turning data into insights. Seismol. Res. Lett. 90, 3–14 (2019).

  15. 15.

    Beroza, G. C. Aftershock forecasts turn to AI. Nature 560, 556–557 (2018).

Download references

Author information

A.M. and M.B. contributed equally to the design and analysis of this study.

Correspondence to Arnaud Mignan or Marco Broccardo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mignan, A., Broccardo, M. One neuron versus deep learning in aftershock prediction. Nature 574, E1–E3 (2019) doi:10.1038/s41586-019-1582-8

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.