Graphene and two-dimensional materials for silicon technology

Abstract

The development of silicon semiconductor technology has produced breakthroughs in electronics—from the microprocessor in the late 1960s to early 1970s, to automation, computers and smartphones—by downscaling the physical size of devices and wires to the nanometre regime. Now, graphene and related two-dimensional (2D) materials offer prospects of unprecedented advances in device performance at the atomic limit, and a synergistic combination of 2D materials with silicon chips promises a heterogeneous platform to deliver massively enhanced potential based on silicon technology. Integration is achieved via three-dimensional monolithic construction of multifunctional high-rise 2D silicon chips, enabling enhanced performance by exploiting the vertical direction and the functional diversification of the silicon platform for applications in opto-electronics and sensing. Here we review the opportunities, progress and challenges of integrating atomically thin materials with silicon-based nanosystems, and also consider the prospects for computational and non-computational applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Potential applications of 2DMs and modern transistor devices.
Fig. 2: Optoelectronic applications.
Fig. 3: Examples of 2D transistor devices and transport characteristics.
Fig. 4: Examples of the use of 2DMs in emerging memory types.
Fig. 5: Integrated graphene and 2D photodevices.
Fig. 6: Graphene sensors integrated with Si read-out electronics.
Fig. 7: Optical characterization of 2DMs suitable for inline metrology.
Fig. 8: Schematic visualization of the technology roadmap for the introduction of 2DMs in CMOS-compatible technology.

References

  1. 1.

    Theis, T. N. & Wong, H. P. The end of Moore’s Law: a new beginning for information technology. Comput. Sci. Eng. 19, 41–50 (2017). A comprehensive overview of device miniaturization and computing systems, and the developing opportunities at the process, device and architecture levels to advance computing and information technology.

    Google Scholar 

  2. 2.

    Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E. & LeBlanc, A. R. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits 9, 256–268 (1974).

    ADS  Google Scholar 

  3. 3.

    Taur, Y., Wann, C. H. & Frank, D. J. 25nm CMOS design considerations. In Proc. IEEE International Electron Devices Meeting (IEDM) 789–792 (IEEE, 1998).

  4. 4.

    Thompson, S. et al. A 90 nm logic technology featuring 50nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 μm2 SRAM cell. In Proc. 2002 IEEE International Electron Devices Meeting (IEDM) 61–64 (IEEE, 2002).

  5. 5.

    Mistry, K. et al. A 45nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry pattering, and 100% Pb-free packaging. In Proc. 2007 IEEE International Electron Devices Meeting (IEDM) 247–250 (IEEE, 2007).

  6. 6.

    Frank, D. J., Taur, Y. & Wong, H.-S. Generalized scale length for two-dimensional effects in MOSFETs. IEEE Electron Device Lett. 19, 385–387 (1998).

    ADS  CAS  Google Scholar 

  7. 7.

    Yan, R.-H., Ourmazd, A. & Lee, K. F. Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans. Electron Dev. 39, 1704–1710 (1992).

    ADS  CAS  Google Scholar 

  8. 8.

    Suzuki, K., Tanaka, T., Tosaka, Y., Horie, H. & Arimoto, Y. Scaling theory for double-gate SOI MOSFET’s. IEEE Trans. Electron Dev. 40, 2326–2329 (1993).

    ADS  CAS  Google Scholar 

  9. 9.

    Auth, C. et al. A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. In 2012 Symp. on VLSI Technology 131–132 (IEEE, 2012).

  10. 10.

    Loubet, N. et al. Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. In 2017 Symp. on VLSI Technology T230–T231 (IEEE, 2017).

  11. 11.

    English, C. D., Shine, G., Dorgan, V. E., Saraswat, K. C. & Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 16, 3824–3830 (2016).

    ADS  CAS  Google Scholar 

  12. 12.

    English, C. D., Smithe, K. K., Xu, R. L. & Pop, E. Approaching ballistic transport in monolayer MoS2 transistors with self-aligned 10 nm top gates. In Proc. 2016 IEEE International Electron Devices Meeting (IEDM) 131–134 (IEEE, 2016).

  13. 13.

    Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016). An engineering accomplishment reporting a working MoS 2 transistor with the gate length defined by a 1-nm carbon nanotube.

    ADS  CAS  Google Scholar 

  14. 14.

    Yang, L. et al. How important is the metal–semiconductor contact for Schottky barrier transistors: a case study on few-layer black phosphorus? ACS Omega 2, 4173–4179 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    McGuire, F. A. et al. Sustained sub-60 mV/decade switching via the negative capacitance effect in MoS2 transistors. Nano Lett. 17, 4801–4806 (2017).

    ADS  CAS  Google Scholar 

  16. 16.

    Si, M. et al. Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat. Nanotechnol. 13, 24–28 (2018).

    ADS  CAS  Google Scholar 

  17. 17.

    Sabry Aly, M. M. et al. Energy-efficient abundant-data computing: the N3XT 1,000 x. Computer 48, 24–33 (2015).

    Google Scholar 

  18. 18.

    Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4587–5062 (2015).

    Google Scholar 

  19. 19.

    Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photon. 11, 366–371 (2017). First report of an integrated graphene–Si camera microchip.

    ADS  CAS  Google Scholar 

  20. 20.

    Mortazavi Zanjani, S. M., Holt, M., Sadeghi, M. M., Rahimi, S. & Akinwande, D. 3D integrated monolayer graphene–Si CMOS RF gas sensor platform. npj 2D Mater. Applicat. 1, 36 (2017).

    Google Scholar 

  21. 21.

    Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 8, 899 (2014).

    ADS  CAS  Google Scholar 

  22. 22.

    Sun, Z., Martinez, A. & Wang, F. Optical modulators with 2D layered materials. Nat. Photon. 10, 227–238(2016).

    ADS  CAS  Google Scholar 

  23. 23.

    Joshi, N. et al. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Mikrochim. Acta 185, 213 (2018).

    Google Scholar 

  24. 24.

    Zhu, C., Du, D. & Lin, Y. Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. Biosens. Bioelectron. 89, 43–55 (2017).

    CAS  Google Scholar 

  25. 25.

    Wang, Y.-H., Huang, K.-J. & Wu, X. Recent advances in transition-metal dichalcogenides based electrochemical biosensors: a review. Biosens. Bioelectron. 97, 305–316 (2017).

    CAS  Google Scholar 

  26. 26.

    Huang, L. et al. Graphene/Si CMOS hybrid Hall integrated circuits. Sci. Rep. 4, 5548 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Cheng, C. et al. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors. Nanophotonics 6, 1343–1352 (2017).

    CAS  Google Scholar 

  28. 28.

    Goldsmith, B. R. et al. Digital biosensing by foundry-fabricated graphene sensors. Sci. Rep. 9, 434 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Image Sensors Market https://www.psmarketresearch.com/market-analysis/image-sensors-market (P&S Intelligence, 2017)

  30. 30.

    Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793(2014).

    ADS  CAS  Google Scholar 

  31. 31.

    NGMN 5G White Paper https://www.ngmn.org/5g-white-paper/5g-white-paper.html (Next Generation Mobile Networks Alliance, 2015).

  32. 32.

    van Uden, R. G. H. et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat. Photon. 8, 865–870 (2014).

    ADS  Google Scholar 

  33. 33.

    Arakawa, Y., Nakamura, T., Urino, Y. & Fujita, T. Silicon photonics for next generation system integration platform. IEEE Commun. Mag. 51, 72–77 (2013).

    Google Scholar 

  34. 34.

    Romagnoli, M. et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414 (2018).

    ADS  CAS  Google Scholar 

  35. 35.

    Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014); erratum 9, 1063 (2014).

    ADS  CAS  Google Scholar 

  36. 36.

    Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    ADS  CAS  Google Scholar 

  37. 37.

    Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

    ADS  CAS  Google Scholar 

  38. 38.

    Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015).

    ADS  CAS  Google Scholar 

  39. 39.

    Iannaccone, G., Bonaccorso, F., Colombo, L. & Fiori, G. Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 13, 183–191 (2018); erratum 13, 520 (2018). Provides a perspective on the progress in 2D heterostructure transistor devices with benchmarking to Si technology, and the contemporary challenges that need to be addressed for future applications.

    ADS  CAS  Google Scholar 

  40. 40.

    Resta, G. V. et al. Doping-free complementary logic gates enabled by two-dimensional polarity-controllable transistors. ACS Nano 12, 7039–7047 (2018).

    CAS  Google Scholar 

  41. 41.

    Lee, K., Kulkarni, G. & Zhong, Z. Coulomb blockade in monolayer MoS2 single electron transistor. Nanoscale 8, 7755–7760 (2016).

    ADS  CAS  Google Scholar 

  42. 42.

    Mishra, V. & Salahuddin, S. Intrinsic limits to contact resistivity in transition metal dichalcogenides. IEEE Electron Device Lett. 38, 1755–1758 (2017).

    ADS  CAS  Google Scholar 

  43. 43.

    Liu, Y., Duan, X., Huang, Y. & Duan, X. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 47, 6388–6409 (2018).

    CAS  Google Scholar 

  44. 44.

    Rai, A. et al. Air stable doping and intrinsic mobility enhancement in monolayer molybdenum disulfide by amorphous titanium suboxide encapsulation. Nano Lett. 15, 4329–4336 (2015).

    ADS  CAS  Google Scholar 

  45. 45.

    Meric, I. et al. Graphene field-effect transistors based on boron–nitride dielectrics. Proc. IEEE 101, 1609–1619 (2013). Elucidates the properties of hBN and why it is ideal for graphene and, by extension, 2D transistors.

    CAS  Google Scholar 

  46. 46.

    Teitz, L. & Toroker, M. C. Materials with honeycomb structures for gate dielectrics in two-dimensional field effect transistors – an ab initio study. Ceram. Int. 45, 9339–9347 (2018).

    Google Scholar 

  47. 47.

    Yum, J. H. et al. Epitaxial ALD BeO: efficient oxygen diffusion barrier for EOT scaling and reliability improvement. IEEE Trans. Electron Dev. 58, 4384–4392 (2011).

    ADS  CAS  Google Scholar 

  48. 48.

    Fuller, S. H. & Millett, L. I. Computing performance: game over or next level? Computer 44, 31–38 (2011).

    Google Scholar 

  49. 49.

    Wong, H. S. & Salahuddin, S. Memory leads the way to better computing. Nat. Nanotechnol. 10, 191–194 (2015); erratum 10, 660 (2015).

    ADS  CAS  Google Scholar 

  50. 50.

    Sohn, J., Lee, S., Jiang, Z., Chen, H. & Wong, H. P. Atomically thin graphene plane electrode for 3D RRAM. In Proc. 2014 IEEE International Electron Devices Meeting (IEDM) 116–119 (IEEE, 2014).

  51. 51.

    Lee, J. et al. Scalable high-performance phase-change memory employing CVD GeBiTe. IEEE Electron Device Lett. 32, 1113–1115 (2011).

    ADS  CAS  Google Scholar 

  52. 52.

    Ahn, C. et al. Energy-efficient phase-change memory with graphene as a thermal barrier. Nano Lett. 15, 6809–6814 (2015).

    ADS  CAS  Google Scholar 

  53. 53.

    Cao, W., Kang, J., Bertolazzi, S., Kis, A. & Banerjee, K. Can 2D-nanocrystals extend the lifetime of floating-gate transistor based nonvolatile memory? IEEE Trans. Electron Dev. 61, 3456–3464 (2014).

    ADS  CAS  Google Scholar 

  54. 54.

    Ko, C. et al. Ferroelectrically gated atomically thin transition-metal dichalcogenides as nonvolatile memory. Adv. Mater. 28, 2923–2930 (2016).

    CAS  Google Scholar 

  55. 55.

    Pan, C. et al. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Funct. Mater. 27, 1604811 (2017).

    Google Scholar 

  56. 56.

    Wu, X. et al. Thinnest nonvolatile memory based on monolayer h-BN. Adv. Mater. 31, 1806790 (2019).

    Google Scholar 

  57. 57.

    Ge, R. et al. Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18, 434–441 (2018). First report on memory effect in TMD monolayer vertical devices, alluding to a ubiquitous effect in non-metallic TMDs.

    ADS  CAS  Google Scholar 

  58. 58.

    Zhang, F. et al. Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories. Nat. Mater. 18, 55–61 (2019).

    ADS  CAS  Google Scholar 

  59. 59.

    Sangwan, V. K. et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 10, 403–406 (2015)

    ADS  CAS  Google Scholar 

  60. 60.

    Kshirsagar, C. U. et al. Dynamic memory cells using MoS2 field-effect transistors demonstrating femtoampere leakage currents. ACS Nano 10, 8457–8464 (2016).

    CAS  Google Scholar 

  61. 61.

    Steinhögl, W., Schindler, G., Steinlesberger, G. & Engelhardt, M. Size-dependent resistivity of metallic wires in the mesoscopic range. Phys. Rev. B 66, 075414 (2002).

    ADS  Google Scholar 

  62. 62.

    Li, L. et al. Vertical and lateral copper transport through graphene layers. ACS Nano 9, 8361–8367 (2015).

    CAS  Google Scholar 

  63. 63.

    Lee, C.-S., Cline, B., Sinha, S., Yeric, G. & Wong, H.-S. P. 32-bit processor core at 5-nm technology: analysis of transistor and interconnect impact on VLSI system performance. In Proc. 2016 IEEE International Electron Devices Meeting (IEDM) 691–694 (IEEE, 2016).

  64. 64.

    Lo, C.-L. et al. Studies of two-dimensional h-BN and MoS2 for potential diffusion barrier application in copper interconnect technology. npj 2D Mater. Applicat. 1, 42 (2017).

  65. 65.

    Li, L. et al. BEOL compatible graphene/Cu with improved electromigration lifetime for future interconnects. In Proc. 2017 IEEE International Electron Devices Meeting (IEDM) 240–243 (IEEE, 2017).

  66. 66.

    Jiang, J. et al. Intercalation doped multilayer-graphene-nanoribbons for next-generation interconnects. Nano Lett. 17, 1482–1488 (2017).

    ADS  CAS  Google Scholar 

  67. 67.

    Liu, M., Yin, X. & Zhang, X. Double-layer graphene optical modulator. Nano Lett. 12, 1482–1485 (2012).

    ADS  Google Scholar 

  68. 68.

    Sorianello, V., Midrio, M. & Romagnoli, M. Design optimization of single and double layer graphene phase modulators in SOI. Opt. Express 23, 6478–6490 (2015).

    ADS  CAS  Google Scholar 

  69. 69.

    Sorianello, V. et al. Graphene–silicon phase modulators with gigahertz bandwidth. Nat. Photon. 12, 40–44 (2018).

    ADS  CAS  Google Scholar 

  70. 70.

    Schuler, S. et al. Controlled generation of a p–n junction in a waveguide integrated graphene photodetector. Nano Lett. 16, 7107–7112 (2016).

    ADS  CAS  Google Scholar 

  71. 71.

    Schall, D. et al. Record high bandwidth integrated graphene photodetectors for communication beyond 180 Gb/s. In Optical Fiber Communication Conf. M2I.4 (Optical Society of America, 2018).

  72. 72.

    Lemme, M. C. et al. Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11, 4134–4137 (2011).

    ADS  CAS  Google Scholar 

  73. 73.

    Shiue, R.-J. et al. High-responsivity graphene–boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett. 15, 7288–7293 (2015).

    ADS  CAS  Google Scholar 

  74. 74.

    Hu, Y. T. et al. Broadband 10Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects. In Proc. 2014 IEEE International Electron Devices Meeting (IEDM) 128–131 (IEEE, 2014).

  75. 75.

    Yang, C. et al. Enabling monolithic 3D image sensor using large-area monolayer transition metal dichalcogenide and logic/memory hybrid 3D+IC. In Proc. 2016 IEEE Symp. on VLSI Technology 1–2 (IEEE, 2016).

  76. 76.

    Haastrup, S. et al. The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater. 5, 042002 (2018).

    CAS  Google Scholar 

  77. 77.

    Molle, A. et al. Buckled two-dimensional Xene sheets. Nat. Mater. 16, 163–169 (2017).

    ADS  CAS  Google Scholar 

  78. 78.

    Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018). A comprehensive computational study to identify a wider portfolio of diverse 2DMs beyond what is experimentally known.

    ADS  CAS  Google Scholar 

  79. 79.

    Gao, L., Guest, J. R. & Guisinger, N. P. Epitaxial graphene on Cu(111). Nano Lett. 10, 3512–3516 (2010).

    ADS  CAS  Google Scholar 

  80. 80.

    Huang, M. et al. Highly oriented monolayer graphene grown on a Cu/Ni(111) alloy foil. ACS Nano 12, 6117–6127 (2018).

    CAS  Google Scholar 

  81. 81.

    Ago, H. et al. Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire. ACS Nano 4, 7407–7414 (2010).

    CAS  Google Scholar 

  82. 82.

    Verguts, K. et al. Controlling water intercalation is key to a direct graphene transfer. ACS Appl. Mater. Interfaces 9, 37484–37492 (2017).

    CAS  Google Scholar 

  83. 83.

    Rahimi, S. et al. Toward 300 mm wafer-scalable high-performance polycrystalline chemical vapor deposited graphene transistors. ACS Nano 8, 10471–10479 (2014). An engineering achievement, demonstrating the growth of large-area monolayer graphene on industrial-scale 300-mm Si wafers.

    CAS  Google Scholar 

  84. 84.

    Lee, J.-H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    ADS  CAS  Google Scholar 

  85. 85.

    Choi, W. et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017).

    CAS  Google Scholar 

  86. 86.

    Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    ADS  CAS  Google Scholar 

  87. 87.

    Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018). A scientific achievement, demonstrating that salt-assisted chemical vapour deposition is a facile method for growing dozens of diverse 2D transitional metal chalcogenides.

    ADS  CAS  Google Scholar 

  88. 88.

    Li, H. et al. Laterally stitched heterostructures of transition metal dichalcogenide: chemical vapor deposition growth on lithographically patterned area. ACS Nano 10, 10516–10523 (2016).

    CAS  Google Scholar 

  89. 89.

    Xie, S. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131–1136 (2018).

    ADS  CAS  PubMed  Google Scholar 

  90. 90.

    Guimarães, M. H. D. et al. Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 10, 6392–6399 (2016).

    Google Scholar 

  91. 91.

    Antonio, R. et al. Scalable synthesis of WS2 on graphene and h-BN: an all-2D platform for light-matter transduction. 2D Mater. 3, 031013 (2016).

    Google Scholar 

  92. 92.

    Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    ADS  CAS  Google Scholar 

  93. 93.

    Huang, J.-K. et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8, 923–930 (2014).

    CAS  Google Scholar 

  94. 94.

    Boyd, D. A. et al. Single-step deposition of high-mobility graphene at reduced temperatures. Nat. Commun. 6, 6620 (2015)

    ADS  CAS  Google Scholar 

  95. 95.

    Kim, J., Sakakita, H. & Itagaki, H. Low-temperature graphene growth by forced convection of plasma-excited radicals. Nano Lett. 19, 739–746 (2019).

    ADS  Google Scholar 

  96. 96.

    Lee, E. et al. Heterogeneous solid carbon source-assisted growth of high-quality graphene via CVD at low temperatures. Adv. Funct. Mater. 26, 562–568 (2016).

    CAS  Google Scholar 

  97. 97.

    Jang, J. et al. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure. Sci. Rep. 5, 17955 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Fujita, J.-i. et al. Near room temperature chemical vapor deposition of graphene with diluted methane and molten gallium catalyst. Sci. Rep. 7, 12371 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Jurca, T. et al. Low-temperature atomic layer deposition of MoS2 films. Angew. Chem. Int. Ed. 56, 4991–4995 (2017).

    CAS  Google Scholar 

  100. 100.

    Delabie, A. et al. Low temperature deposition of 2D WS2 layers from WF6 and H2S precursors: impact of reducing agents. Chem. Commun. 51, 15692–15695 (2015).

    CAS  Google Scholar 

  101. 101.

    Chen, M., Haddon, R. C., Yan, R. & Bekyarova, E. Advances in transferring chemical vapour deposition graphene: a review. Mater. Horiz. 4, 1054–1063 (2017).

    CAS  Google Scholar 

  102. 102.

    Liang, X. et al. Toward clean and crackless transfer of graphene. ACS Nano 5, 9144–9153 (2011).

    Google Scholar 

  103. 103.

    Wang, B. et al. Support-free transfer of ultrasmooth graphene films facilitated by self-assembled monolayers for electronic devices and patterns. ACS Nano 10, 1404–1410 (2016).

    CAS  Google Scholar 

  104. 104.

    Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017)

    ADS  PubMed  Google Scholar 

  105. 105.

    Verguts, K., Coroa, J., Huyghebaert, C., De Gendt, S. & Brems, S. Graphene delamination using ‘electrochemical methods’: an ion intercalation effect. Nanoscale 10, 5515–5521 (2018).

    CAS  Google Scholar 

  106. 106.

    Li, X.-L. et al. Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater. 27, 1604468 (2017).

    Google Scholar 

  107. 107.

    Li, H. et al. Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 7, 10344–10353 (2013).

    CAS  Google Scholar 

  108. 108.

    Braeuninger-Weimer, P. et al. Fast, noncontact, wafer-scale, atomic layer resolved imaging of two-dimensional materials by ellipsometric contrast micrography. ACS Nano 12, 8555–8563 (2018).

    CAS  Google Scholar 

  109. 109.

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    ADS  PubMed  Google Scholar 

  110. 110.

    Lee, J. E., Ahn, G., Shim, J., Lee, Y. S. & Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 3, 1024 (2012)

    ADS  Google Scholar 

  111. 111.

    Amani, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 350, 1065–1068 (2015).

    ADS  CAS  Google Scholar 

  112. 112.

    Mignuzzi, S. et al. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 91, 195411 (2015).

    ADS  Google Scholar 

  113. 113.

    Mennel, L. et al. Optical imaging of strain in two-dimensional crystals. Nat. Commun. 9, 516 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Buron, J. D. et al. Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate. Opt. Express 23, 30721–30729 (2015).

    ADS  CAS  Google Scholar 

  115. 115.

    Kiriya, D., Tosun, M., Zhao, P., Kang, J. S. & Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 136, 7853–7856 (2014).

    CAS  Google Scholar 

  116. 116.

    Li, M.-Y., Su, S.-K., Wong, H.-S. P. & Li, L.-J. How 2D semiconductors could extend Moore’s law. Nature 567, 169–170 (2019).

    ADS  CAS  Google Scholar 

  117. 117.

    The IC memory market will grow 40% to US$177 billion in 2018. AnySilicon https://anysilicon.com/ic-memory-market-will-grow-40-us177-billion-2018/ (Yole Développement, Yole Group of Companies, 2018).

  118. 118.

    Auth, C. et al. A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, self-aligned quad patterning, contact over active gate and cobalt local interconnects. In Proc. 2017 IEEE International Electron Devices Meeting (IEDM) 673–676 (IEEE, 2017).

  119. 119.

    Photonics is about to get flatter. Photonics Media https://www.photonics.com/Articles/Photonics_is_About_to_get_Flatter/a55428

  120. 120.

    Zuzak, K. et al. Novel hyperspectral imager aids surgeons. SPIE News http://www.spie.org/news/1394-novel-hyperspectral-imager-aids-surgeons?SSO=1 (SPIE, 2019).

Download references

Acknowledgements

D.A. acknowledges support from the US National Science Foundation (NSF), the US Office of Naval Research (ONR), and the Presidential Early Career Award for Scientists and Engineers (PECASE) through the US Army Research Office. C.-H.W. and H.-S.P.W. acknowledge support from the NSF, AFOSR MURI, the Semiconductor Research Corporation (SRC) STARnet FAME and SRC JUMP ASCENT, and member companies of the Stanford SystemX Alliance and the Stanford Non-Volatile Memory Technology Research Initiative (NMTRI). L.-J.L. and H.-S.P.W. acknowledge substantial management support from TSMC. C.H. acknowledges support from the Logic Imec Industrial Affiliation Program and funding from the Graphene Flagship initiative. F.H.L.K. acknowledges financial support from the Government of Catalonia through an SGR grant (2017, 1656), from the Spanish Ministry of Economy and Competitiveness through the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0522), from Fundacio Cellex Barcelona, and from the CERCA Programme/Generalitat de Catalunya. Furthermore, the research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement no. 785219, Graphene Flagship.

Author information

Affiliations

Authors

Contributions

All authors contributed to the writing of this Review, which was led by D.A. and F.H.L.K.

Corresponding author

Correspondence to Deji Akinwande.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Jeehwan Kim and Frank Schwierz for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akinwande, D., Huyghebaert, C., Wang, C. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019). https://doi.org/10.1038/s41586-019-1573-9

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing