Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas


Supersolids are exotic materials combining the frictionless flow of a superfluid with the crystal-like periodic density modulation of a solid. The supersolid phase of matter was predicted 50 years ago1,2,3 for solid helium4,5,6,7,8. Ultracold quantum gases have recently been made to exhibit periodic order typical of a crystal, owing to various types of controllable interaction9,10,11,12,13. A crucial feature of a D-dimensional supersolid is the occurrence of D + 1 gapless excitations, reflecting the Goldstone modes associated with the spontaneous breaking of two continuous symmetries: the breaking of phase invariance, corresponding to the locking of the phase of the atomic wave functions at the origin of superfluid phenomena, and the breaking of translational invariance due to the lattice structure of the system. Such modes have been the object of intense theoretical investigations1,14,15,16,17,18, but they have not yet been observed experimentally. Here we demonstrate supersolid symmetry breaking through the appearance of two distinct compressional oscillation modes in a harmonically trapped dipolar Bose–Einstein condensate, reflecting the gapless Goldstone excitations of the homogeneous system. We observe that the higher-frequency mode is associated with an oscillation of the periodicity of the emergent lattice and the lower-frequency mode characterizes the superfluid oscillations. This work also suggests the presence of two separate quantum phase transitions between the superfluid, supersolid and solid-like configurations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Doubling of the axial breathing mode in the supersolid regime (theory).
Fig. 2: Doubling of the axial breathing mode in the supersolid regime (experiment).
Fig. 3: Axial mode frequencies from BEC to supersolid and droplet crystal.

Data availability

The datasets that support the findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Andreev, A. F. & Lifshitz, I. M. Quantum theory of defects in crystals. Sov. Phys. JETP 29, 1107–1113 (1969).

    ADS  Google Scholar 

  2. 2.

    Chester, G. V. Speculations on Bose–Einstein condensation and quantum crystals. Phys. Rev. A 2, 256–258 (1970).

    ADS  Google Scholar 

  3. 3.

    Leggett, A. J. Can a solid be “superfluid”? Phys. Rev. Lett. 25, 1543–1546 (1970).

    ADS  CAS  Google Scholar 

  4. 4.

    Boninsegni, M. & Prokof’ev, N. V. Colloquium: Supersolids: what and where are they? Rev. Mod. Phys. 84, 759 (2012).

    ADS  CAS  Google Scholar 

  5. 5.

    Kim, E. & Chan, M. H. W. Probable observation of a supersolid helium phase. Nature 427, 225–227 (2004).

    ADS  CAS  PubMed  Google Scholar 

  6. 6.

    Balibar, S. The enigma of supersolidity. Nature 464, 176–182 (2010).

    ADS  CAS  PubMed  Google Scholar 

  7. 7.

    Kim, D. Y. & Chan, M. H. W. Absence of supersolidity in solid helium in porous Vycor glass. Phys. Rev. Lett. 109, 155301 (2012).

    ADS  PubMed  Google Scholar 

  8. 8.

    Nyéki, J. et al. Intertwined superfluid and density wave order in two-dimensional 4He. Nat. Phys. 13, 455–459 (2017).

    Google Scholar 

  9. 9.

    Li, J.-R. et al. A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates. Nature 543, 91–94 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).

    Google Scholar 

  13. 13.

    Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).

    CAS  Google Scholar 

  14. 14.

    Josserand, C., Pomeau, Y. & Rica, S. Coexistence of ordinary elasticity and superfluidity in a model of a defect-free supersolid. Phys. Rev. Lett. 98, 195301 (2007).

    ADS  PubMed  Google Scholar 

  15. 15.

    Watanabe, H. & Brauner, T. Spontaneous breaking of continuous translational invariance. Phys. Rev. D 85, 085010 (2012).

    ADS  Google Scholar 

  16. 16.

    Kunimi, M. & Kato, Y. Mean-field and stability analyses of two-dimensional flowing soft-core bosons modeling a supersolid. Phys. Rev. B 86, 060510(R) (2012).

    ADS  Google Scholar 

  17. 17.

    Saccani, S., Moroni, S. & Boninsegni, M. Excitation spectrum of a supersolid. Phys. Rev. Lett. 108, 175301 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Roccuzzo S. M. & Ancilotto, F. Supersolid behavior of a dipolar Bose-Einstein condensate confined in a tube. Phys. Rev. A 99, 041601(R) (2019).

    ADS  Google Scholar 

  19. 19.

    Li, Y., Pitaevskii, L. P. & Stringari, S. Quantum tricriticality and phase transitions in spin-orbit-coupled Bose–Einstein condensates. Phys. Rev. Lett. 108, 225301 (2012).

    ADS  Google Scholar 

  20. 20.

    Lang, J., Piazza, F. & Zwerger, W. Collective excitations and supersolid behavior of bosonic atoms inside two crossed optical cavities. New J. Phys. 19, 123027 (2017).

    ADS  Google Scholar 

  21. 21.

    Pupillo, G., Micheli, A., Boninsegni, M., Lesanovsky, I. & Zoller, P. Strongly correlated gases of Rydberg-dressed atoms: quantum and classical dynamics. Phys. Rev. Lett. 104, 223002 (2010).

    ADS  CAS  PubMed  Google Scholar 

  22. 22.

    Macrì, T., Maucher, F., Cinti, F., & Pohl, T. Elementary excitations of ultracold soft-core bosons across the superfluid-supersolid phase transition. Phys. Rev. A 87, 061602 (2013).

    ADS  Google Scholar 

  23. 23.

    Ancilotto, F., Rossi, M. & Toigo, F. Supersolid structure and excitation spectrum of soft-core bosons in three dimensions. Phys. Rev. A 88, 033618 (2013).

    ADS  Google Scholar 

  24. 24.

    Lu, Z.-K., Li, Y., Petrov, D. S. & Shlyapnikov, G. V. Stable dilute supersolid of two-dimensional dipolar bosons. Phys. Rev. Lett. 115, 075303 (2015).

    ADS  PubMed  Google Scholar 

  25. 25.

    Stringari, S. Collective excitations of a trapped Bose-condensed gas. Phys. Rev. Lett. 77, 2360–2363 (1996).

    ADS  CAS  PubMed  Google Scholar 

  26. 26.

    Jin, D. S., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Collective excitations of a Bose-Einstein condensate in a dilute gas. Phys. Rev. Lett. 77, 420–423 (1996).

    ADS  CAS  PubMed  Google Scholar 

  27. 27.

    Mewes, M. O. et al. Collective excitations of a Bose-Einstein condensate in a magnetic trap. Phys. Rev. Lett. 77, 988–991 (1996).

    ADS  CAS  PubMed  Google Scholar 

  28. 28.

    Pitaevskii, L. & Stringari, S. Bose-Einstein Condensation and Superfluidity (Oxford Univ. Press, 2011).

  29. 29.

    Petter, D. et al. Probing the roton excitation spectrum of a stable dipolar Bose gas. Phys. Rev. Lett. 122, 183401 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Chomaz, L. et al. Observation of roton mode population in a dipolar quantum gas. Nat. Phys. 14, 442–446 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Lima, A. R. P. & Pelster, A. Beyond mean-field low-lying excitations of dipolar Bose gases. Phys. Rev. A 86, 063609 (2012).

    ADS  Google Scholar 

  32. 32.

    Kadau, H. et al. Observing the Rosensweig instability of a quantum ferrofluid. Nature 530, 194–197 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Wenzel, M., Böttcher, F., Langen, T., Ferrier-Barbut, I. & Pfau, T. Striped states in a many-body system of tilted dipoles. Phys. Rev. A 96, 053630 (2017).

    ADS  Google Scholar 

  34. 34.

    van Bijnen, R. M. W., Parker, N. G., Kokkelmans, S. J. J. M. F., Martin, A. M. & O’Dell, D. H. J. Collective excitation frequencies and stationary states of trapped dipolar Bose-Einstein condensates in the Thomas-Fermi regime. Phys. Rev. A 82, 033612 (2010).

    ADS  Google Scholar 

  35. 35.

    Ronen, S., Bortolotti, D. C. E. & Bohn, J. L. Bogoliubov modes of a dipolar condensate in a cylindrical trap. Phys. Rev. A 74, 013623 (2006).

    ADS  Google Scholar 

  36. 36.

    Blakie, P.E., Baillie, D. & Bisset, R. N. Roton spectroscopy in a harmonically trapped dipolar Bose-Einstein condensate. Phys. Rev. A 86, 021604 (2012).

    ADS  Google Scholar 

  37. 37.

    Léonard, J., Morales, A., Zupancic, P., Donner, T. & Esslinger, T. Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas. Science 358, 1415–1418 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Guo, M. et al. The low-energy Goldstone mode in a trapped dipolar supersolid. Nature (2019).

    PubMed  Google Scholar 

  39. 39.

    Natale, G. et al. Excitation spectrum of a trapped dipolar supersolid and its experimental evidence. Phys. Rev. Lett. 123, 050402 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Menotti, C. & Stringari, S. Collective oscillations of a one-dimensional trapped Bose-Einstein gas. Phys. Rev. A 66, 043610 (2002).

    ADS  Google Scholar 

  41. 41.

    Matveeva, N., Recati, A. & Stringari, S. Dipolar drag in bilayer harmonically trapped gases. Eur. Phys. J. D 65, 219–222 (2011).

    ADS  CAS  Google Scholar 

  42. 42.

    Lucioni, E. et al. Dysprosium dipolar Bose-Einstein condensate with broad Feshbach resonances. Phys. Rev. A 97, 060701 (2018).

    ADS  CAS  Google Scholar 

  43. 43.

    Böttcher, F. et al. Quantum correlations in dilute dipolar quantum droplets beyond the extended Gross-Pitaevskii equation. Preprint at (2019).

  44. 44.

    Giovanazzi, S. et al. Expansion dynamics of a dipolar Bose-Einstein condensate. Phys. Rev. A 74, 013621 (2006).

    ADS  Google Scholar 

  45. 45.

    Giorgini, S. Collisionless dynamics of dilute Bose gases: Role of quantum and thermal fluctuations. Phys. Rev. A 61, 063615 (2000).

    ADS  Google Scholar 

Download references


This work received funding from the EC-H2020 research and innovation program (grant number 641122-QUIC). We acknowledge discussions with R. Citro and J. G. Maloberti and technical assistance from A. Barbini, F. Pardini, M. Tagliaferri and M. Voliani. S.M.R., A.R. and S.S. acknowledge funding from Provincia Autonoma di Trento and the Q@TN initiative. We acknowledge discussions with the participants of the Stuttgart meeting on ‘Perspectives for supersolidity in dipolar droplet arrays’.

Author information




L.T., E.L., F.F., A.F., C.G. and G.M. conceived the experimental investigation, performed the measurements and the experimental data analysis. S.M.R., A.R. and S.S. conceived the theoretical investigation, performed the simulations and the theoretical data analysis. All authors contributed to discussions and writing of the paper.

Corresponding authors

Correspondence to G. Modugno or A. Recati.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Nature thanks Sean Mossman, Georgy Shlyapnikov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Fig. 1 Peak amplitude and relative distance.

In the supersolid regime, the axial breathing mode bifurcates into higher- and lower-frequency modes, mainly coupled to the relative distance between the density peaks and to their amplitude, respectively. a, b, Time evolution of the relative distance d(t) between two density peaks (a) and its Fourier transform, dominated by a peak at the higher frequency (red arrow) (b). c, d, Time evolution of the peak density amplitude A(t) (c) and its Fourier transform, dominated by the lower-frequency mode (blue arrow) (d).

Extended Data Fig. 2 Examples of small- and large-amplitude oscillations.

a, b, Typical false-colour experimental distributions in the \(({k}_{x},{k}_{y})\) plane for the BEC regime close to the roton instability, \({{\epsilon }}_{{\rm{dd}}}\) = 1.35(3) (a) and the droplet regime, \({{\epsilon }}_{{\rm{dd}}}\) = 1.50(5) (b). c, d, Small-amplitude oscillation of \({\sigma }_{k}(t)\) under the same conditions, \({{\epsilon }}_{{\rm{dd}}}\) = 1.35(3) (c) and \({{\epsilon }}_{{\rm{dd}}}\) = 1.50(5) (d). e, f, Large-amplitude oscillation of \({\sigma }_{k}(t)\) for the BEC regime, \({{\epsilon }}_{{\rm{dd}}}\) = 1.21(2) (e) and the supersolid regime, \({{\epsilon }}_{{\rm{dd}}}\) = 1.38(2) (f). In the supersolid regime, we observe a small frequency shift in the oscillation of \({\sigma }_{k}(t)\) over time: we fit ω/ωx = 1.43(1) up to about 150 ms (blue line), and ω/ωx = 1.48(2) from 150 ms onwards (red line). Error bars represent the standard deviation of 4–8 measurements.

Extended Data Fig. 3 Large temperature measurements in the BEC regime.

a, b, Measured frequency (a) and measured damping time (b) of the axial breathing mode at \({{\epsilon }}_{{\rm{dd}}}\) ≈ 1.2 for increasing temperature. The measured frequency for a thermal gas (red dot) is compatible with ω/ωx = 2, demonstrating the collisionless nature of the system and the breaking of phase invariance for the BEC. Error bars represent the standard deviation of 4–8 measurements.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanzi, L., Roccuzzo, S.M., Lucioni, E. et al. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature 574, 382–385 (2019).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing