Extended Data Fig. 6: Neuronal input triggers glioma network activation. | Nature

Extended Data Fig. 6: Neuronal input triggers glioma network activation.

From: Glutamatergic synaptic input to glioma cells drives brain tumour progression

Extended Data Fig. 6

a, Spontaneous SIC with temporally correlated calcium transient in high magnification. b, c, Representative traces of voltage response to current injection simulating slow inward currents (top) and simultaneous calcium trace (bottom) in two different time scales. d, Representative current-clamp recording from a PDX S24 glioma cell selected from a total of n = 318 recordings from different models. Voltage responses to current injections (−80 to 360 pA; step size, 40 pA). e, Individual glioma cells of one tumour microregion respond to ChR2 stimulation with different latencies. Calcium traces of individual glioma cells were normalized to values between 0 and 1. f, Standard deviation projection of calcium time-series imaging of GCaMP6 fluorescence in S24 cells co-cultured with neurons. Arrow denotes bipolar stimulation electrode; numbers 1 to 4 correspond to individual tumour cells in g. g, Different latencies of calcium responses to neuronal stimulation. h, Representative coactivity maps of functionally neuron-connected glioma cells (blue) and non-neuron connected glioma cells (red) after neuronal ChR2 stimulation. i, Quantification of connections between functionally neuron-connected glioma cells and non-neuron connected glioma cells before and after neuronal ChR2 stimulation, normalized to the number of functionally neuron-connected glioma cells (n = 10 experiments in 5 S24 PDX mice, see Supplementary Methods). P value determined by two-sided Mann–Whitney test. j, Representative traces showing gabazine-induced stacking of slow currents into prolonged events (n = 8 cells in S24 co-culture). Data are mean ± s.e.m

Source data.

Back to article page