Magnitude of urban heat islands largely explained by climate and population


Urban heat islands (UHIs) exacerbate the risk of heat-related mortality associated with global climate change. The intensity of UHIs varies with population size and mean annual precipitation, but a unifying explanation for this variation is lacking, and there are no geographically targeted guidelines for heat mitigation. Here we analyse summertime differences between urban and rural surface temperatures (ΔTs) worldwide and find a nonlinear increase in ΔTs with precipitation that is controlled by water or energy limitations on evapotranspiration and that modulates the scaling of ΔTs with city size. We introduce a coarse-grained model that links population, background climate, and UHI intensity, and show that urban–rural differences in evapotranspiration and convection efficiency are the main determinants of warming. The direct implication of these nonlinearities is that mitigation strategies aimed at increasing green cover and albedo are more efficient in dry regions, whereas the challenge of cooling tropical cities will require innovative solutions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Effect of background climate and population size on urban warming and its components.
Fig. 2: Urban warming and green spaces in Europe and South East Asia.
Fig. 3: Impact of background climate on the efficiency of heat mitigation strategies.

Data availability

The Global Urban Heat Island Data Set 2013 is available at (accessed on 7 December 2017). MERRA data were retrieved from (downloaded on 4 March 2018) while GPCC data are available at (accessed on 13 September 2016). MODIS albedo data are available at (accessed on 15 July 2018). Urban green cover data for EU and SEA cities are available, respectively, at,_towns_and_suburbs_-_green_cities#Further_Eurostat_information (accessed on 14 June 2017) and (accessed on 29 September 2017). A summary table containing the urban and climate characteristics of the cities analysed is also available on Code Ocean (

Code availability

The MATLAB code ( of the coarse-grained UHI model is available on Code Ocean (


  1. 1.

    Oke, T. R. City size and the urban heat island. Atmos. Environ. 7, 769–779 (1973).

    ADS  Article  Google Scholar 

  2. 2.

    Zhao, L., Lee, X., Smith, R. B. & Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 511, 216–219 (2014).

    ADS  CAS  Article  Google Scholar 

  3. 3.

    Oke, T. R., Mills, G., Christen, A. & Voogt, J. A. Urban Climates (Cambridge Univ. Press, 2017).

  4. 4.

    Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    Rydin, Y. et al. Shaping cities for health: complexity and the planning of urban environments in the 21st century. Lancet 379, 2079–2108 (2012).

    Article  Google Scholar 

  6. 6.

    Mora, C. et al. Global risk of deadly heat. Nat. Clim. Chang. 7, 501–506 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    Zhao, L. et al. Interactions between urban heat islands and heat waves. Environ. Res. Lett. 13, 034003 (2018).

    ADS  Article  Google Scholar 

  8. 8.

    Imhoff, M. L., Zhang, P., Wolfe, R. E. & Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 114, 504–513 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    Zhou, B., Rybski, D. & Kropp, J. P. On the statistics of urban heat island intensity. Geophys. Res. Lett. 40, 5486–5491 (2013).

    ADS  Article  Google Scholar 

  10. 10.

    Zhou, D., Zhang, L., Li, D., Huang, D. & Zhu, C. Climate–vegetation control on the diurnal and seasonal variations of surface urban heat islands in China. Environ. Res. Lett. 11, 074009 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Liao, W. et al. Stronger contributions of urbanization to heat wave trends in wet climates. Geophys. Res. Lett. 45, 11310–11317 (2018).

    ADS  Google Scholar 

  12. 12.

    Peng, S. et al. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 46, 696–703 (2012).

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Clinton, N. & Gong, P. MODIS detected surface urban heat islands and sinks: global locations and controls. Remote Sens. Environ. 134, 294–304 (2013).

    ADS  Article  Google Scholar 

  14. 14.

    Li, D. et al. Urban heat island: aerodynamics or imperviousness? Sci. Adv. 5, eaau4299 (2019).

    ADS  Article  Google Scholar 

  15. 15.

    Bai, X. et al. Six research priorities for cities and climate change. Nature 555, 23–25 (2018).

    ADS  CAS  Article  Google Scholar 

  16. 16.

    Gu, Y. & Li, D. A modeling study of the sensitivity of urban heat islands to precipitation at climate scales. Urban Clim. 24, 982–993 (2018).

    Article  Google Scholar 

  17. 17.

    Schläpfer, M., Lee, J. & Bettencourt, L. Urban skylines: building heights and shapes as measures of city size. Preprint at (2015).

  18. 18.

    Grimmond, S. & Oke, T. R. Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteorol. 38, 1262–1292 (1999).

    ADS  Article  Google Scholar 

  19. 19.

    Gunawardena, K. R., Wells, M. J. & Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 584-585, 1040–1055 (2017).

    ADS  CAS  Article  Google Scholar 

  20. 20.

    Eurostat. Urban Europe—Statistics on Cities, Towns and Suburbs (Publications Office of the European Union, Luxembourg, 2016).

  21. 21.

    CIESIN. Global Urban Heat Island (UHI) Data Set, 2013 (Center for International Earth Science Information Network, 2016).

  22. 22.

    Richards, D. R., Passy, P. & Oh, R. Impacts of population density and wealth on the quantity and structure of urban green space in tropical Southeast Asia. Landsc. Urban Plan. 157, 553–560 (2017).

    Article  Google Scholar 

  23. 23.

    Bettencourt, L. M., Lobo, J., Helbing, D., Kühnert, C. & West, G. B. Growth, innovation, scaling, and the pace of life in cities. Proc. Natl Acad. Sci. USA 104, 7301–7306 (2007).

    ADS  CAS  Article  Google Scholar 

  24. 24.

    Chrysoulakis, N. et al. Urban energy exchanges monitoring from space. Sci. Rep. 8, 11498 (2018).

    ADS  Article  Google Scholar 

  25. 25.

    Sobstyl, J. M., Emig, T., Qomi, M. J. A., Ulm, F. J. & Pellenq, R. J. Role of city texture in urban heat islands at nighttime. Phys. Rev. Lett. 120, 108701 (2018).

    ADS  CAS  Article  Google Scholar 

  26. 26.

    Gill, S. E., Handley, J. F., Ennos, A. R. & Pauleit, S. Adapting cities for climate change: the role of the green infrastructure. Built Environ. 33, 115–133 (2007).

    Article  Google Scholar 

  27. 27.

    Scott, A. A., Waugh, D. W. & Zaitchik, B. F. Reduced urban heat island intensity under warmer conditions. Environ. Res. Lett. 13, 064003 (2018).

    ADS  Article  Google Scholar 

  28. 28.

    Imamura, I. R. Role of soil moisture in the determination of urban heat island intensity in different climate regimes. WIT Trans. Ecol. Envir. 1, 395–402 (1970).

    Google Scholar 

  29. 29.

    Lee, X. et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387 (2011).

    ADS  CAS  Article  Google Scholar 

  30. 30.

    Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108, 1–24 (1982).

    ADS  Google Scholar 

  31. 31.

    Shashua-Bar, L., Pearlmutter, D. & Erell, E. The cooling efficiency of urban landscape strategies in a hot dry climate. Landsc. Urban Plan. 92, 179–186 (2009).

    Article  Google Scholar 

  32. 32.

    Kumar, R. et al. Dominant control of agriculture and irrigation on urban heat island in India. Sci. Rep. 7, 14054 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Madani, N. et al. Future global productivity will be affected by plant trait response to climate. Sci. Rep. 8, 2870 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    Lim, Y. K., Cai, M., Kalnay, E. & Zhou, L. Observational evidence of sensitivity of surface climate changes to land types and urbanization. Geophys. Res. Lett. 32, L22712 (2005).

    ADS  Article  Google Scholar 

  35. 35.

    Shastri, H., Barik, B., Ghosh, S., Venkataraman, C. & Sadavarte, P. Flip flop of day-night and summer-winter surface urban heat island intensity in India. Sci. Rep. 7, 40178 (2017).

    ADS  CAS  Article  Google Scholar 

  36. 36.

    Juang, J. Y., Katul, G., Siqueira, M., Stoy, P. & Novick, K. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophys. Res. Lett. 34, L21408 (2007).

    ADS  Article  Google Scholar 

  37. 37.

    Willis, K. J. & Petrokofsky, G. The natural capital of city trees. Science 356, 374–376 (2017).

    ADS  CAS  Article  Google Scholar 

  38. 38.

    Manickathan, L., Defraeye, T., Allegrini, J., Derome, D. & Carmeliet, J. Parametric study of the influence of environmental factors and tree properties on the transpirative cooling effect of trees. Agric. For. Meteorol. 248, 259–274 (2018).

    ADS  Article  Google Scholar 

  39. 39.

    Jendritzky, G., de Dear, R. & Havenith, G. UTCI—why another thermal index? Int. J. Biometeorol. 56, 421–428 (2012).

    ADS  Article  Google Scholar 

  40. 40.

    Llaguno-Munitxa, M. & Bou-Zeid, E. Shaping buildings to promote street ventilation: a large-eddy simulation study. Urban Clim. 26, 76–94 (2018).

    Article  Google Scholar 

  41. 41.

    Yang, J. & Bou-Zeid, E. Should cities embrace their heat islands as shields from extreme cold? J. Appl. Meteorol. Climatol. 57, 1309–1320 (2018).

    ADS  Article  Google Scholar 

  42. 42.

    Seino, N., Aoyagi, T. & Tsuguti, H. Numerical simulation of urban impact on precipitation in Tokyo: how does urban temperature rise affect precipitation? Urban Clim. 23, 8–35 (2018).

    Article  Google Scholar 

  43. 43.

    Endreny, T. A. Strategically growing the urban forest will improve our world. Nat. Commun. 9, 1160 (2018).

    ADS  Article  Google Scholar 

  44. 44.

    Emmanuel, R., Rosenlund, H. & Johansson, E. Urban shading—a design option for the tropics? A study in Colombo, Sri Lanka. Int. J. Climatol. 27, 1995–2004 (2007).

    Article  Google Scholar 

  45. 45.

    Wong, M. S., Nichol, J. E., To, P. H. & Wang, J. A simple method for designation of urban ventilation corridors and its application to urban heat island analysis. Build. Environ. 45, 1880–1889 (2010).

    Article  Google Scholar 

  46. 46.

    Akbari, H., Menon, S. & Rosenfeld, A. Global cooling: increasing world-wide urban albedos to offset CO2. Clim. Change 94, 275–286 (2009).

    ADS  CAS  Article  Google Scholar 

  47. 47.

    Georgescu, M., Morefield, P. E., Bierwagen, B. G. & Weaver, C. P. Urban adaptation can roll back warming of emerging megapolitan regions. Proc. Natl Acad. Sci. USA 111, 2909–2914 (2014).

    ADS  CAS  Article  Google Scholar 

  48. 48.

    Estrada, F., Botzen, W. W. J. & Tol, R. S. J. A global economic assessment of city policies to reduce climate change impacts. Nat. Clim. Chang. 7, 403–406 (2017).

    ADS  Article  Google Scholar 

  49. 49.

    Mayor of London. London Environment Strategy (Mayor of London, 2018).

  50. 50.

    Bastin, J.-F. et al. Understanding climate change from a global analysis of city analogues. PloS One 14, e0217592 (2019).

    Article  Google Scholar 

  51. 51.

    Bettencourt, L. M. & Lobo, J. Urban scaling in Europe. J. R. Soc. Interface 13, 20160005 (2016).

    Article  Google Scholar 

  52. 52.

    Fuller, R. A. & Gaston, K. J. The scaling of green space coverage in European cities. Biol. Lett. 5, 352–355 (2009).

    Article  Google Scholar 

  53. 53.

    Fang, Y. & Jawitz, J. W. High-resolution reconstruction of the United States human population distribution, 1790 to 2010. Sci. Data 5, 180067 (2018).

    Article  Google Scholar 

  54. 54.

    Gasparrini, A. et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 386, 369–375 (2015).

    Article  Google Scholar 

  55. 55.

    Clarke, J. F. Some effects of the urban structure on heat mortality. Environ. Res. 5, 93–104 (1972).

    CAS  Article  Google Scholar 

  56. 56.

    Li, Y. et al. Evaluating biases in simulated land surface albedo from CMIP5 global climate models. J. Geophys. Res. Atmos. 121, 6178–6190 (2016).

    ADS  Article  Google Scholar 

  57. 57.

    Chen, D., Loboda, T. V., He, T., Zhang, Y. & Liang, S. Strong cooling induced by stand-replacing fires through albedo in Siberian larch forests. Sci. Rep. 8, 4821 (2018).

    ADS  Article  Google Scholar 

  58. 58.

    Oke, T. R. The urban energy balance. Prog. Phys. Geogr. 12, 471–508 (1988).

    Article  Google Scholar 

  59. 59.

    Taha, H., Akbari, H., Rosenfeld, A. & Huang, J. Residential cooling loads and the urban heat island—the effects of albedo. Build. Environ. 23, 271–283 (1988).

    Article  Google Scholar 

  60. 60.

    Akbari, H., Rosenfeld, A. & Taha, H. in Proc. American Society of Heating, Refrigeration, and Air-Conditioning Engineers, Lawrence Berkeley National Laboratory Report LBNL-28308 (Atlanta, Georgia, 1990)

  61. 61.

    Yang, X. & Li, Y. The impact of building density and building height heterogeneity on average urban albedo and street surface temperature. Build. Environ. 90, 146–156 (2015).

    Article  Google Scholar 

  62. 62.

    Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA–2). J. Clim. 30, 5419–5454 (2017).

    ADS  Article  Google Scholar 

  63. 63.

    Schneider, U. et al. GPCC full data reanalysis version 7.0 at 0.5: monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. (Global Precipitation Climatology Centre, 2015).

  64. 64.

    Miguez-Macho, G. & Fan, Y. The role of groundwater in the Amazon water cycle: 2. Influence on seasonal soil moisture and evapotranspiration. J. Geophys. Res. Atmos. 117, D15114 (2012).

    ADS  Google Scholar 

  65. 65.

    Maxwell, R. M. & Condon, L. E. Connections between groundwater flow and transpiration partitioning. Science 353, 377–380 (2016).

    ADS  CAS  Article  Google Scholar 

  66. 66.

    Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).

    ADS  CAS  Article  Google Scholar 

  67. 67.

    Bettencourt, L. M. The origins of scaling in cities. Science 340, 1438–1441 (2013).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  68. 68.

    Shepherd, J. M. A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact. 9, 1–27 (2005).

    Article  Google Scholar 

  69. 69.

    Taleghani, M., Tenpierik, M., van den Dobbelsteen, A. & Sailor, D. J. Heat mitigation strategies in winter and summer: field measurements in temperate climates. Build. Environ. 81, 309–319 (2014).

    Article  Google Scholar 

Download references


G.M. was supported by the The Branco Weiss Fellowship—Society in Science administered by ETH Zurich. E.B.-Z. acknowledges support by the US National Science Foundation under grant no. ICER 1664091, the SRN under cooperative agreement no. 1444758, and the Army Research Office under contract W911NF-15-1-0003 (program manager J. Barzyk). M.S. was supported by the Future Cities Laboratory at the Singapore-ETH Centre, which was established collaboratively between ETH Zurich and Singapore’s National Research Foundation (FI 370074016), under its Campus for Research Excellence and Technological Enterprise programme. We thank P. Edwards, J. Carmeliet, C. Küffer, and D. Richards for help and discussions at the beginning of this research.

Author information




G.M. designed the study, developed the model and conducted the analysis with contributions from S.F., G.G.K. and E.B.-Z. K.Y. and T.W.C. analysed albedo remote sensing observations. G.M. wrote the original draft of the manuscript with input from S.F., G.G.K. and E.B.-Z. M.S., K.Y., T.W.C., N.M. and P.B. reviewed and edited the manuscript. All authors discussed the results and contributed to the final version of the manuscript.

Corresponding author

Correspondence to Gabriele Manoli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Nature thanks Lahouari Bounoua, Ben Crawford and Qihao Weng for their contribution to the peer review of this work.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Tables 1–6, Supplementary Figs 1–25 and Supplementary References.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manoli, G., Fatichi, S., Schläpfer, M. et al. Magnitude of urban heat islands largely explained by climate and population. Nature 573, 55–60 (2019).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing