Changing climate both increases and decreases European river floods


Climate change has led to concerns about increasing river floods resulting from the greater water-holding capacity of a warmer atmosphere1. These concerns are reinforced by evidence of increasing economic losses associated with flooding in many parts of the world, including Europe2. Any changes in river floods would have lasting implications for the design of flood protection measures and flood risk zoning. However, existing studies have been unable to identify a consistent continental-scale climatic-change signal in flood discharge observations in Europe3, because of the limited spatial coverage and number of hydrometric stations. Here we demonstrate clear regional patterns of both increases and decreases in observed river flood discharges in the past five decades in Europe, which are manifestations of a changing climate. Our results—arising from the most complete database of European flooding so far—suggest that: increasing autumn and winter rainfall has resulted in increasing floods in northwestern Europe; decreasing precipitation and increasing evaporation have led to decreasing floods in medium and large catchments in southern Europe; and decreasing snow cover and snowmelt, resulting from warmer temperatures, have led to decreasing floods in eastern Europe. Regional flood discharge trends in Europe range from an increase of about 11 per cent per decade to a decrease of 23 per cent. Notwithstanding the spatial and temporal heterogeneity of the observational record, the flood changes identified here are broadly consistent with climate model projections for the next century4,5, suggesting that climate-driven changes are already happening and supporting calls for the consideration of climate change in flood risk management.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Observed regional trends of river flood discharges in Europe (1960–2010).
Fig. 2: Long-term temporal evolution of flood discharges and their drivers for seven hotspots in Europe.
Fig. 3: Specific 100-year flood discharge in Europe.

Data availability

The flood discharge data from the data holders/sources listed in Extended Data Table 1 that were used in this paper are available at The precipitation and temperature data from the E-OBS dataset are available at The CPC soil moisture data can be downloaded from

Code availability

The code used for the trend estimation and the extreme value analysis can be downloaded from


  1. 1.

    IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) (Cambridge Univ. Press, 2012).

  2. 2.

    European Academies’ Science Advisory Council. Extreme Weather Events in Europe. Report No. 22 (EASAC, 2018).

  3. 3.

    Hall, J. et al. Understanding flood regime changes in Europe: a state of the art assessment. Hydrol. Earth Syst. Sci. 18, 2735–2772 (2014).

    ADS  Article  Google Scholar 

  4. 4.

    Kundzewicz, Z. et al. Differences in flood hazard projections in Europe – their causes and consequences for decision making. Hydrol. Sci. J. 62, 1–14 (2017).

    Google Scholar 

  5. 5.

    Thober, S. et al. Multi-model ensemble projections of European river floods and high flows at 1.5, 2, and 3 degrees global warming. Environ. Res. Lett. 13, 014003 (2018).

    ADS  Article  Google Scholar 

  6. 6.

    Desai, B., Maskrey, A., Peduzzi, P., De Bono, A., & Herold, C. Making Development Sustainable: The Future of Disaster Risk Management. Global Assessment Report on Disaster Risk Reduction (UNISDR, 2015).

  7. 7.

    Winsemius, H. C. et al. Global drivers of future river flood risk. Nat. Clim. Change 6, 381–385 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Blöschl, G. et al. Changing climate shifts timing of European floods. Science 357, 588–590 (2017).

    ADS  Article  Google Scholar 

  9. 9.

    Mangini, W. et al. Detection of trends in magnitude and frequency of flood peaks across Europe. Hydrol. Sci. J. 63, 493–512 (2018).

    Article  Google Scholar 

  10. 10.

    Berghuijs, W., Aalbers, E., Larsen, J., Trancoso, R. & Woods, R. Recent changes in extreme floods across multiple continents. Environ. Res. Lett. 12, 114035 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Hodgkins, G. A. et al. Climate-driven variability in the occurrence of major floods across North America and Europe. J. Hydrol. 552, 704–717 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Hall, J. et al. A European Flood Database: facilitating comprehensive flood research beyond administrative boundaries. Proc. Int. Assoc. Hydrol. Sci. 370, 89–95 (2015).

    Google Scholar 

  13. 13.

    Sivapalan, M., Blӧschl, G., Merz, R. & Gutknecht, D. Linking flood frequency to long-term water balance: incorporating effects of seasonality. Wat. Resour. Res. 41, W06012 (2005).

    ADS  Article  Google Scholar 

  14. 14.

    Bayliss, A. C. & Jones, R. C. Peaks-over-threshold Flood Database: Summary Statistics and Seasonality. Report No. 121 (Institute of Hydrology, 1993).

  15. 15.

    Schröter, K., Kunz, M., Elmer, F., Mühr, B. & Merz, B. What made the June 2013 flood in Germany an exceptional event? A hydro-meteorological evaluation. Hydrol. Earth Syst. Sci. 19, 309–327 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Mediero, L., Santillán, D., Garrote, L. & Granados, A. Detection and attribution of trends in magnitude, frequency and timing of floods in Spain. J. Hydrol. 517, 1072–1088 (2014).

    ADS  Article  Google Scholar 

  17. 17.

    Hall, J. & Blӧschl, G. Spatial patterns and characteristics of flood seasonality in Europe. Hydrol. Earth Syst. Sci. 22, 3883–3901 (2018).

    ADS  Article  Google Scholar 

  18. 18.

    IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  19. 19.

    Archer, C. L. & Caldeira, K. Historical trends in the jet streams. Geophys. Res. Lett. 35, 08803 (2008).

    ADS  Article  Google Scholar 

  20. 20.

    Kang, S. M. & Lu, J. Expansion of the Hadley cell under global warming: winter versus summer. J. Clim. 25, 8387–8393 (2012).

    ADS  Article  Google Scholar 

  21. 21.

    Amponsah, W. et al. Integrated high-resolution dataset of high-intensity European and Mediterranean flash floods. Earth Syst. Sci. Data 10, 1783–1794 (2018).

    ADS  Article  Google Scholar 

  22. 22.

    Ban, N., Schmidli, J. & Schär, C. Heavy precipitation in a changing climate: does short-term summer precipitation increase faster? Geophys. Res. Lett. 42, 1165–1172 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Rogger, M. et al. Land use change impacts on floods at the catchment scale: challenges and opportunities for future research. Wat. Resour. Res. 53, 5209–5219 (2017).

    ADS  CAS  Article  Google Scholar 

  24. 24.

    Perdigão, R. A. P., Pires, C. A. L. & Hall, J. Synergistic dynamic theory of complex coevolutionary systems: disentangling nonlinear spatiotemporal controls on precipitation. Preprint at (2016).

  25. 25.

    Estilow, T. W., Young, A. H. & Robinson, D. A. A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth Syst. Sci. Data 7, 137–142 (2015).

    ADS  Article  Google Scholar 

  26. 26.

    Frolova, N. L. et al. Hydrological hazards in Russia: origin, classification, changes and risk assessment. Nat. Hazards 88, 103–131 (2017).

    Article  Google Scholar 

  27. 27.

    Mediero, L. et al. Identification of coherent flood regions across Europe by using the longest streamflow records. J. Hydrol. (Amst.) 528, 341–360 (2015).

    ADS  Article  Google Scholar 

  28. 28.

    Salinas, J. L., Castellarin, A., Kohnova, S. & Kjeldsen, T. Regional parent flood frequency distributions in Europe-Part 2: climate and scale controls. Hydrol. Earth Syst. Sci. 18, 4391–4401 (2014).

    ADS  Article  Google Scholar 

  29. 29.

    Xoplaki, E., Gonzalez-Rouco, J. F., Luterbacher, J. & Wanner, H. Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim. Dyn. 23, 63–78 (2004).

    Article  Google Scholar 

  30. 30.

    Brooks, H. E. Severe thunderstorms and climate change. Atmos. Res. 123, 129–138 (2013).

    Article  Google Scholar 

  31. 31.

    Vogt, J. et al. A pan-European River and Catchment Database. Report No. EUR 22920 (Office for Official Publications of the European Communities, 2007).

  32. 32.

    Haylock, M. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. 113, D20119 (2008).

    ADS  Article  Google Scholar 

  33. 33.

    van den Dool, H., Huang, J. & Fan, Y. Performance and analysis of the constructed analogue method applied to US soil moisture over 1981–2001. J. Geophys. Res. 108, 8617 (2003).

    Article  Google Scholar 

  34. 34.

    Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    MathSciNet  Article  Google Scholar 

  35. 35.

    Theil, H. A rank-invariant method of linear and polynomial regression analysis. Part 1. Proc. K. Ned. Akad. Wet. 53, 386–392 (1950).

    MATH  Google Scholar 

  36. 36.

    Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).

    MathSciNet  Article  Google Scholar 

  37. 37.

    Hiemstra, P. H., Pebesma, E. J., Twenhӧfel, C. J. & Heuvelink, G. B. Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Comput. Geosci. 35, 1711–1721 (2009).

    ADS  CAS  Article  Google Scholar 

  38. 38.

    Wilcox, R. A note on the Theil-Sen regression estimator when the regressor is random and the error term is heteroscedastic. Biometrical J. 40, 261–268 (1998).

    Article  Google Scholar 

  39. 39.

    Helsel, D. R. & Frans, L. M. Regional Kendall test for trend. Environ. Sci. Technol. 40, 4066–4073 (2006).

    ADS  CAS  Article  Google Scholar 

  40. 40.

    Renard, B., Lang, M. & Bois, P. Statistical analysis of extreme events in a non-stationary context via a Bayesian framework: case study with peak-over-threshold data. Stoch. Env. Res. Risk A. 21, 97–112 (2006).

    MathSciNet  Article  Google Scholar 

  41. 41.

    Martins, E. S. & Stedinger, J. R. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Wat. Resour. Res. 36, 737–744 (2000).

    ADS  Article  Google Scholar 

  42. 42.

    Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).

    MathSciNet  MATH  Google Scholar 

Download references


This work was supported by the ERC Advanced Grant ‘FloodChange’ project (number 291152), the Horizon 2020 ETN ‘System Risk’ project (number 676027), the DFG ‘SPATE’ project (FOR 2416), the FWF ‘SPATE’ project (I 3174) and a Russian Foundation for Basic Research (RFBR) project (number 17-05-41030 rgo_a). The data analysis was performed in R using the supporting packages automap, boot, lattice, maptools, ncdf4, plyr, raster, RColorBrewer, rgdal and rworldmap. The authors acknowledge the involvement in the data screening process of C. Álvaro Díaz, I. Borzì, E. Diamantini, K. Jeneiová, M. Kupfersberger, S. Mallucci and S. Persiano during their stays at the Vienna University of Technology. We thank L. Gaál and D. Rosbjerg for contacting Finnish and Danish data holders, respectively; B. Renard (France), W. Rigott (South Tyrol, Italy), G. Lindström (Sweden) and P. Burlando (Switzerland) for assistance in preparing and/or providing data or metadata from their respective regions. We acknowledge all flood data providers listed in Extended Data Table 1.

Author information




G.B. and J. Hall designed the study and wrote the first draft of the paper. G.B. initiated the study. J. Hall collated the database with the help of most of the co-authors and conducted the analyses. A.V. conducted the MCMC analysis. G.B., J. Hall, A.V., R.A.P.P., J.P. and B.M. interpreted the results in the context of underlying geophysical mechanisms. J.P. compiled the catchment boundaries. D.L. contributed to the statistical analysis. M. Boháč, I.Č., A.K., S.K., O.L., M.M.-G., R.M., P.M., I.R., J.L.S., J.S. and N.Ž. interpreted the results in central Europe. G.T.A., A.B., O.B., M. Borga, A.C., G.B.C., P.C., D.G., A.M., L.M., M.Š., E.V. and K.Z. interpreted the results in southern Europe. B.A., J.J.K. and D.W. interpreted the results in northern Europe. J. Hannaford, S.H., T.R.K., N.M., C.M. and E.S. interpreted the results in western Europe. N.F., L.G., A.G., M.K., M.O. and V.O. interpreted the results in eastern Europe. All authors contributed to framing and revising the paper.

Corresponding author

Correspondence to Günter Blöschl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Map of European study area.

a, Elevation (in metres above sea level), main rivers and lakes. b, Locations of the hydrometric stations analysed. Open and full circles indicate stations with more than 30 years (n = 3,738) and more than 40 years (n = 2,835) of flood discharge data, respectively.

Extended Data Fig. 2 Observed trends of river flood discharges in Europe (1960–2010).

a, Points show local trends (n = 2,370), with larger points indicating statistically significant trends (significance level α = 0.1). Background pattern represents regional trends. Blue indicates increasing flood discharges and red denotes decreasing flood discharges. Rectangles indicate hotspot areas as in Fig. 2, Extended Data Fig. 3, Extended Data Table 2c. b, Uncertainties of the trends in terms of standard deviation. Points show local uncertainties. The background pattern represents regional uncertainties at the scale of a block size of 200 × 200 km2. Units of both panels are per cent of mean per decade.

Extended Data Fig. 3 Flood trends as in Fig. 1 and Extended Data Fig. 2, but using fewer stations.

a, Only stations with significant trends are used (n = 664). b, Only stations with distances larger than 50 km from each other are used (n = 745).

Extended Data Fig. 4 Long-term temporal evolution of timing of floods and their drivers for seven hotspots in Europe.

a, Northern United Kingdom; b, western France; c, southern Germany and western Czechia; d, northern Iberia; e, central Balkans; f, southern Finland; g, western Russia. Shown are the timing of observed floods (green), the seven-day maximum precipitation (purple), the snowmelt index (orange) and the maximum monthly soil moisture (blue). Lines show the median timing and shaded bands indicate the variability of timing within the year (±0.5 circular standard deviations). All data were subjected to a circular ten-year moving-average filter. Vertical axes show month of the year (June to May).

Extended Data Fig. 5 Seven-day maximum precipitation (1960–2010).

a, Long-term mean (in millimetres per day). b, Trends in precipitation (per cent of mean per decade), for which larger points indicate statistically significant trends (α = 0.1). Blue indicates increasing precipitation and red denotes decreasing precipitation.

Extended Data Figure 6 Spring (January to April) mean air temperatures (1960–2010).

a, Long-term mean (in degrees Celsius); b, trends in temperatures (in degrees Celsius per decade), with larger points indicating statistically significant trends (α = 0.1). Red indicates increasing temperature and blue represents decreasing temperature. JFMA, January to April.

Extended Data Fig. 7 Annual maximum monthly soil moisture (1960–2010).

a, Long-term mean (in millimetres). b, Trends in maximum soil moisture (per cent of mean per decade), for which larger points indicate statistically significant trends (α = 0.1). Blue indicates increasing soil moisture and red denotes decreasing soil moisture.

Extended Data Fig. 8 Estimated return period in 2010 for the 1960 100-year flood discharge.

Points show local return periods (n = 2,370), with larger points indicating agreement of the 5th and the 95th percentiles of the uncertainty distribution in the sign of change. The background pattern represents regional return periods. Blue indicates lower return periods, representing increasing flood discharges, and red indicates higher return periods, representing decreasing flood discharges. This figure provides a continental overview and does not replace national-scale and local studies, for which more detailed information may be available.

Extended Data Table 1 Data sources included in the European Flood Database
Extended Data Table 2 Flood trends in Europe

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blöschl, G., Hall, J., Viglione, A. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing