Collisions between cold molecules in a superconducting magnetic trap


Collisions between cold molecules are essential for studying fundamental aspects of quantum chemistry, and may enable the formation of quantum degenerate molecular matter by evaporative cooling. However, collisions between trapped, naturally occurring molecules have not been directly observed so far owing to the low collision rates of dilute samples. Here we report the direct observation of collisions between cold trapped molecules, without the need for laser cooling. We magnetically capture molecular oxygen in an 800-millikelvin-deep superconducting trap and set bounds on the ratio between the elastic- and inelastic-scattering rates—the key parameter determining the feasibility of evaporative cooling. We further co-trap atoms and molecules and identify collisions between them, paving the way for studies of cold interspecies collisions in a magnetic trap.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental setup.
Fig. 2: Column-integrated density signal through the trap centre for different trap depths.
Fig. 3: Trapping of lithium.
Fig. 4: Spatial probing of the trap.
Fig. 5: Effect of collisional properties on the spatial variation of the decay rate.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Herbst, E. The chemistry of interstellar space. Chem. Soc. Rev. 30, 168–176 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327, 853–857 (2010).

    CAS  Article  ADS  Google Scholar 

  3. 3.

    Ni, K.-K. et al. Dipolar collisions of polar molecules in the quantum regime. Nature 464, 1324–1328 (2010).

    CAS  Article  ADS  Google Scholar 

  4. 4.

    Chefdeville, S. et al. Observation of partial wave resonances in low-energy O2–H2 inelastic collisions. Science 341, 1094–1096 (2013).

    CAS  Article  ADS  Google Scholar 

  5. 5.

    Vogels, S. N. et al. Scattering resonances in bimolecular collisions between NO radicals and H2 challenge the theoretical gold standard. Nat. Chem. 10, 435–440 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    De Marco, L. et al. A degenerate Fermi gas of polar molecules. Science 363, 853–856 (2019).

    Article  ADS  Google Scholar 

  7. 7.

    Herschbach, D. R. in Advances in Chemical Physics (ed. Ross, J.) Ch. 9 (Wiley, 1966).

  8. 8.

    Smith, I. W. M. Reactions at very low temperatures: gas kinetics at a new frontier. Angew. Chem. Int. Ed. 45, 2842–2861 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    Henson, A. B., Gersten, S., Shagam, Y., Narevicius, J. & Narevicius, E. Observation of resonances in Penning ionization reactions at sub-kelvin temperatures in merged beams. Science 338, 234–238 (2012).

    CAS  Article  ADS  Google Scholar 

  10. 10.

    Jankunas, J., Bertsche, B., Jachymski, K., Hapka, M. & Osterwalder, A. Dynamics of gas phase Ne + NH3 and Ne + ND3 Penning ionisation at low temperatures. J. Chem. Phys. 140, 244302 (2014).

    Article  ADS  Google Scholar 

  11. 11.

    Allmendinger, P. et al. New method to study ion–molecule reactions at low temperatures and application to the \({{\rm{H}}}_{2}^{+}+{{\rm{H}}}_{2}\longrightarrow {{\rm{H}}}_{3}^{+}+{\rm{H}}\) reaction. Chem. Phys. Chem. 17, 3596–3608 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Wu, X. et al. A cryofuge for cold-collision experiments with slow polar molecules. Science 358, 645–648 (2017).

    CAS  Article  ADS  Google Scholar 

  13. 13.

    Greiner, M., Regal, C. A. & Jin, D. S. Emergence of a molecular Bose–Einstein condensate from a Fermi gas. Nature 426, 537–540 (2003).

    CAS  Article  ADS  Google Scholar 

  14. 14.

    Chin, C. et al. Observation of Feshbach-like resonances in collisions between ultracold molecules. Phys. Rev. Lett. 94, 123201 (2005).

    CAS  Article  ADS  Google Scholar 

  15. 15.

    Takekoshi, T. et al. Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. Phys. Rev. Lett. 113, 205301 (2014).

    Article  ADS  Google Scholar 

  16. 16.

    Rvachov, T. M. et al. Long-lived ultracold molecules with electric and magnetic dipole moments. Phys. Rev. Lett. 119, 143001 (2017).

    Article  ADS  Google Scholar 

  17. 17.

    Ye, X., Guo, M., González-Martínez, M. L., Quéméner, G. & Wang, D. Collisions of ultracold 23Na87Rb molecules with controlled chemical reactivities. Sci. Adv. 4, eaaq0083 (2018).

    Article  ADS  Google Scholar 

  18. 18.

    Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).

    CAS  Article  ADS  Google Scholar 

  19. 19.

    Truppe, S. et al. Molecules cooled below the Doppler limit. Nat. Phys. 13, 1173–1176 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Kozyryev, I. et al. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118, 173201 (2017).

    Article  ADS  Google Scholar 

  21. 21.

    Anderegg, L. et al. Radio frequency magneto-optical trapping of CaF with high density. Phys. Rev. Lett. 119, 103201 (2017).

    Article  ADS  Google Scholar 

  22. 22.

    Anderegg, L. et al. An optical tweezer array of ultracold molecules. Preprint at (2019).

  23. 23.

    Weinstein, J. D., deCarvalho, R., Guillet, T., Friedrich, B. & Doyle, J. M. Magnetic trapping of calcium monohydride molecules at millikelvin temperatures. Nature 395, 148–150 (1998).

    CAS  Article  ADS  Google Scholar 

  24. 24.

    Bethlem, H. L. et al. Electrostatic trapping of ammonia molecules. Nature 406, 491–494 (2000).

    CAS  Article  ADS  Google Scholar 

  25. 25.

    van de Meerakker, S. Y. T., Smeets, P. H. M., Vanhaecke, N., Jongma, R. T. & Meijer, G. Deceleration and electrostatic trapping of OH radicals. Phys. Rev. Lett. 94, 023004 (2005).

    Article  ADS  Google Scholar 

  26. 26.

    Haas, D., von Planta, C., Kierspel, T., Zhang, D. & Willitsch, S. Long-term trapping of cold polar molecules. (2019).

  27. 27.

    Hoekstra, S. et al. Optical pumping of trapped neutral molecules by blackbody radiation. Phys. Rev. Lett. 98, 133001 (2007).

    Article  ADS  Google Scholar 

  28. 28.

    Hoekstra, S. et al. Electrostatic trapping of metastable NH molecules. Phys. Rev. A 76, 063408 (2007).

    Article  ADS  Google Scholar 

  29. 29.

    Zeppenfeld, M. et al. Sisyphus cooling of electrically trapped polyatomic molecules. Nature 491, 570–573 (2012).

    CAS  Article  ADS  Google Scholar 

  30. 30.

    Liu, Y. et al. Magnetic trapping of cold methyl radicals. Phys. Rev. Lett. 118, 093201 (2017).

    Article  ADS  Google Scholar 

  31. 31.

    Parazzoli, L. P., Fitch, N. J., Z˙uchowski, P. S., Hutson, J. M. & Lewandowski, H. J. Large effects of electric fields on atom–molecule collisions at millikelvin temperatures. Phys. Rev. Lett. 106, 193201 (2011).

    CAS  Article  ADS  Google Scholar 

  32. 32.

    Hummon, M. T. et al. Cold N+NH collisions in a magnetic trap. Phys. Rev. Lett. 106, 053201 (2011).

    Article  ADS  Google Scholar 

  33. 33.

    Singh, V. et al. Chemical reactions of atomic lithium and molecular calcium monohydride at 1 K. Phys. Rev. Lett. 108, 203201 (2012).

    Article  ADS  Google Scholar 

  34. 34.

    Stuhl, B. K. et al. Evaporative cooling of the dipolar hydroxyl radical. Nature 492, 396–400 (2012).

    CAS  Article  ADS  Google Scholar 

  35. 35.

    Reens, D., Wu, H., Langen, T. & Ye, J. Controlling spin flips of molecules in an electromagnetic trap. Phys. Rev. A 96, 063420 (2017).

    Article  ADS  Google Scholar 

  36. 36.

    Ketterle, W. & Van Druten, N. J. Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys. 37, 181–236 (1996).

    CAS  Article  ADS  Google Scholar 

  37. 37.

    Hess, H. F. et al. Magnetic trapping of spin-polarized atomic hydrogen. Phys. Rev. Lett. 59, 672–675 (1987).

    CAS  Article  ADS  Google Scholar 

  38. 38.

    Akerman, N. et al. Simultaneous deceleration of atoms and molecules in a supersonic beam. New J. Phys. 17, 065015 (2015).

    Article  ADS  Google Scholar 

  39. 39.

    Akerman, N. et al. Trapping of molecular oxygen together with lithium atoms. Phys. Rev. Lett. 119, 073204 (2017).

    Article  ADS  Google Scholar 

  40. 40.

    Yokelson, R. J., Lipert, R. J. & Chupka, W. A. Identification of the nsσ and ndλ Rydberg states of O2 for n = 3–5. J. Chem. Phys. 97, 6153–6167 (1992).

    CAS  Article  ADS  Google Scholar 

  41. 41.

    Avdeenkov, A. V. & Bohn, J. L. Ultracold collisions of oxygen molecules. Phys. Rev. A 64, 052703 (2001).

    Article  ADS  Google Scholar 

  42. 42.

    Bird, G. A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, 1994).

  43. 43.

    Geppert, W. D. et al. Comparison of the cross-sections and thermal rate constants for the reactions of C(3PJ) atoms with O2 and NO. Phys. Chem. Chem. Phys. 2, 2873–2881 (2000).

    CAS  Article  Google Scholar 

  44. 44.

    Tscherbul, T. V., Suleimanov, Y. V., Aquilanti, V. & Krems, R. V. Magnetic field modification of ultracold molecule–molecule collisions. New J. Phys. 11, 055021 (2009).

    Article  ADS  Google Scholar 

  45. 45.

    Pérez-Ríos, J., Campos-Martínez, J. & Hernández, M. I. Ultracold O2 + O2 collisions in a magnetic field: on the role of the potential energy surface. J. Chem. Phys. 134, 124310 (2011).

    Article  ADS  Google Scholar 

  46. 46.

    Even, U. The Even–Lavie valve as a source for high intensity supersonic beam. EPJ Tech. Instrum. 2, 17 (2015).

    Article  Google Scholar 

  47. 47.

    Even, U., Jortner, J., Noy, D., Lavie, N. & Cossart-Magos, C. Cooling of large molecules below 1 K and He clusters formation. J. Chem. Phys. 112, 8068–8071 (2000).

    CAS  Article  ADS  Google Scholar 

  48. 48.

    Sundaram, A. et al. 2G HTS wires made on 30 μm thick Hastelloy substrate. Supercond. Sci. Technol. 29, 104007 (2016).

    Article  ADS  Google Scholar 

Download references


We thank A. Kuprienko of the Weizmann Chemical Research Support and H. Sade of the Weizmann CNC Section for assistance in designing and manufacturing the experiment components. We acknowledge funding from the European Research Council and the Israel Science Foundation. Y.S. acknowledges support from the Azrieli Foundation.

Author information




All authors contributed to all aspects of this work.

Corresponding author

Correspondence to Edvardas Narevicius.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Density decay for two limiting cases.

The blue curve represents the density distribution shortly after loading, with all particles with bound trajectories remaining. For the case of only inelastic collisions (γ = 0), the density distribution after 10% of the particles have been lost exhibits an almost uniform decay (green). By contrast, the corresponding distribution for only elastic collisions (γ → ∞) displays an increase in density near the trap centre. The trap radius is 4 mm.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Segev, Y., Pitzer, M., Karpov, M. et al. Collisions between cold molecules in a superconducting magnetic trap. Nature 572, 189–193 (2019).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing