Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Challenges in evidencing the earliest traces of life

Abstract

Earth has been habitable for 4.3 billion years, and the earliest rock record indicates the presence of a microbial biosphere by at least 3.4 billion years ago—and disputably earlier. Possible traces of life can be morphological or chemical but abiotic processes that mimic or alter them, or subsequent contamination, may challenge their interpretation. Advances in micro- and nanoscale analyses, as well as experimental approaches, are improving the characterization of these biosignatures and constraining abiotic processes, when combined with the geological context. Reassessing the evidence of early life is challenging, but essential and timely in the quest to understand the origin and evolution of life, both on Earth and beyond.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Challenges in studying traces of early life.
Fig. 2: Traces of life.
Fig. 3: Placing biosignatures on the tree of life.
Fig. 4: Evolution of early life.

References

  1. 1.

    Harrison, T. M., Bell, E. A. & Boehnke, P. Hadean zircon petrochronology. Rev. Mineral. Geochemistry 83, 329–363 (2017).

    ADS  CAS  Google Scholar 

  2. 2.

    Mojzsis, S. J., Harrison, T. M. & Pidgeon, R. T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409, 178–181 (2001).

    ADS  CAS  PubMed  Google Scholar 

  3. 3.

    Alleon, J. & Summons, R. E. Organic geochemical approaches to understanding early life. Free Radic. Biol. Med. https://doi.org/10.1016/j.freeradbiomed.2019.03.005 (2019). An up-to-date review on the formation of graphite, and on the available analytical methods and challenges for evidencing its biogenicity and antiquity.

  4. 4.

    Allwood, A. C., Rosing, M. T., Flannery, D. T., Hurowitz, J. A. & Heirwegh, C. M. Reassessing evidence of life in 3,700-million-year-old rocks of Greenland. Nature 563, 241–244 (2018).

    ADS  CAS  PubMed  Google Scholar 

  5. 5.

    Schopf, J. W. Fossil evidence of Archaean life. Phil. Trans. R. Soc. Lond. B 361, 869–885 (2006).

    CAS  Google Scholar 

  6. 6.

    Thomazo, C. et al. Biological activity and the Earth’s surface evolution: insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record. C. R. Palevol 8, 665–678 (2009). This detailed review discusses the challenges and limitations in interpreting the early isotopic record.

    Google Scholar 

  7. 7.

    van Zuilen, M. A., Lepland, A. & Arrhenius, G. Reassessing the evidence for the earliest traces of life. Nature 418, 627–630 (2002). This article provides plausible abiotic explanations for the formation of graphite and the debated earliest record of life.

    ADS  PubMed  Google Scholar 

  8. 8.

    Wacey, D. Early Life on Earth: A Practical Guide (Springer Science & Business Media, 2009).

  9. 9.

    Westall, F. & Folk, R. L. Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua Greenstone Belt: implications for the search for life in ancient rocks. Precambr. Res. 126, 313–330 (2003).

    ADS  CAS  Google Scholar 

  10. 10.

    Bernard, S. & Papineau, D. Graphitic carbons and biosignatures. Elements 10, 435–440 (2014).

    CAS  Google Scholar 

  11. 11.

    Bosak, T., Knoll, A. H. & Petroff, A. P. The meaning of stromatolites. Annu. Rev. Earth Planet. Sci. 41, 21–44 (2013). A comprehensive review of the diversity of stromatolites at different spatial and time scales, and their environmental and biological controls.

    ADS  CAS  Google Scholar 

  12. 12.

    Brasier, M., McLoughlin, N., Green, O. & Wacey, D. A fresh look at the fossil evidence for early Archaean cellular life. Phil. Trans. R. Soc. B 361, 887–902 (2006).

    CAS  Google Scholar 

  13. 13.

    French, K. L. et al. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl Acad. Sci. USA 112, 5915–5920 (2015).

    ADS  CAS  PubMed  Google Scholar 

  14. 14.

    Javaux, E. J. & Lepot, K. The Paleoproterozoic fossil record: implications for the evolution of the biosphere during Earth’s middle-age. Earth Sci. Rev. 176, 68–86 (2018).

    CAS  Google Scholar 

  15. 15.

    Knoll, A. H., Bergmann, K. D. & Strauss, J. V. Life: the first two billion years. Phil. Trans. R. Soc. B 371, 20150493 (2016).

    Google Scholar 

  16. 16.

    Noffke, N. Geobiology: Microbial Mats in Sandy Deposits from the Archean Era to Today (Springer Science & Business Media, 2010).

  17. 17.

    Olcott Marshall, A. & Marshall, C. P. Comment on ‘Biogenicity of Earth’s earliest fossils: a resolution of the controversy’ by J. W. Schopf and A. B. Kudryavtsev, Gondwana Research 22 (2012) 761–771. Gondwana Res. 23, 1654–1655 (2013).

    ADS  Google Scholar 

  18. 18.

    Westall, F. Life on the early Earth: a sedimentary view. Science 308, 366–367 (2005).

    CAS  PubMed  Google Scholar 

  19. 19.

    Allwood, A. C. et al. Controls on development and diversity of Early Archean stromatolites. Proc. Natl Acad. Sci. USA 106, 9548–9555 (2009).

    ADS  CAS  PubMed  Google Scholar 

  20. 20.

    Buick, R. Microfossil recognition in Archean rocks: an appraisal of spheroids and filaments from a 3500 M.Y. old chert–barite unit at North Pole, Western Australia. Palaios 5, 441–459 (1990). A pioneering discussion on criteria to use for evidencing the biogenicity of microfossils.

    ADS  Google Scholar 

  21. 21.

    Javaux, E. J., Marshall, C. P. & Bekker, A. Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463, 934–938 (2010).

    ADS  CAS  PubMed  Google Scholar 

  22. 22.

    Sugitani, K. et al. Diverse microstructures from Archaean chert from the Mount Goldsworthy-Mount Grant area, Pilbara craton, Western Australia: microfossils, dubiofossils, or pseudofossils? Precambr. Res. 158, 228–262 (2007).

    Google Scholar 

  23. 23.

    Furnes, H., Banerjee, N. R., Muehlenbachs, K., Staudigel, H. & de Wit, M. Early life recorded in Archean pillow lavas. Science 304, 578–581 (2004).

    ADS  CAS  PubMed  Google Scholar 

  24. 24.

    Grosch, E. G. & McLoughlin, N. Reassessing the biogenicity of Earth’s oldest trace fossil with implications for biosignatures in the search for early life. Proc. Natl Acad. Sci. USA 111, 8380–8385 (2014).

    ADS  CAS  PubMed  Google Scholar 

  25. 25.

    Lepot, K., Benzerara, K. & Philippot, P. Biogenic versus metamorphic origins of diverse microtubes in 2.7 Gyr old volcanic ashes: multi-scale investigations. Earth Planet. Sci. Lett. 312, 37–47 (2011).

    ADS  CAS  Google Scholar 

  26. 26.

    van Zuilen, M. A., Chaussidon, M., Rollion-Bard, C. & Marty, B. Carbonaceous cherts of the Barberton Greenstone Belt, South Africa: isotopic, chemical and structural characteristics of individual microstructures. Geochim. Cosmochim. Acta 71, 655–669 (2007).

    Google Scholar 

  27. 27.

    Sforna, M. C., van Zuilen, M. A. & Philippot, P. Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex chert, Western Australia. Geochim. Cosmochim. Acta 124, 18–33 (2014).

    ADS  CAS  Google Scholar 

  28. 28.

    Pasteris, J. D. & Wopenka, B. Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology 3, 727–738 (2003).

    ADS  CAS  PubMed  Google Scholar 

  29. 29.

    Naraoka, H., Ohtake, M., Maruyama, S. & Ohmoto, H. Non-biogenic graphite in 3.8-Ga metamorphic rocks from the Isua district, Greenland. Chem. Geol. 133, 251–260 (1996).

    ADS  Google Scholar 

  30. 30.

    McCollom, T. M. & Seewald, J. S. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet. Sci. Lett. 243, 74–84 (2006). This article shows that abiotic Fischer–Tropsch-type reactions in hydrothermal conditions lead to the formation of organics with isotopic signatures similar to life.

    ADS  CAS  Google Scholar 

  31. 31.

    Mathez, E. A. Carbonaceous matter in mantle xenoliths: composition and relevance to the isotopes. Geochim. Cosmochim. Acta 51, 2339–2347 (1987).

    ADS  CAS  Google Scholar 

  32. 32.

    Alleon, J. et al. Organic molecular heterogeneities can withstand diagenesis. Sci. Rep. 7, 1508 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Alexander, C. M. O. D., Fogel, M., Yabuta, H. & Cody, G. D. The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim. Cosmochim. Acta 71, 4380–4403 (2007).

    ADS  CAS  Google Scholar 

  34. 34.

    Sforna, M. C. et al. Abiotic formation of condensed carbonaceous matter in the hydrating oceanic crust. Nat. Commun. 9, 5049 (2018). This paper illustrates, for the first time, the formation of abiotic condensed organic matter in natural conditions by low temperature alteration of the oceanic crust.

    ADS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Mißbach, H. et al. Assessing the diversity of lipids formed via Fischer–Tropsch-type reactions. Org. Geochem. 119, 110–121 (2018).

    Google Scholar 

  36. 36.

    Morag, N. et al. Microstructure-specific carbon isotopic signatures of organic matter from ~3.5 Ga cherts of the Pilbara Craton support a biologic origin. Precambr. Res. 275, 429–449 (2016).

    ADS  CAS  Google Scholar 

  37. 37.

    Sephton, M. A. Organic compounds in carbonaceous meteorites. Nat. Prod. Rep. 19, 292–311 (2002).

    CAS  PubMed  Google Scholar 

  38. 38.

    Stüeken, E. E., Zaloumis, J., Meixnerová, J. & Buick, R. Differential metamorphic effects on nitrogen isotopes in kerogen extracts and bulk rocks. Geochim. Cosmochim. Acta 217, 80–94 (2017).

    ADS  Google Scholar 

  39. 39.

    Dauphas, N., John, S. G. & Rouxel, O. Iron isotope systematics. Rev. Mineral. Geochemistry 82, 415–510 (2017).

    ADS  CAS  Google Scholar 

  40. 40.

    Kamyshny, A. Jr, Druschel, G., Mansaray, Z. F. & Farquhar, J. Multiple sulfur isotopes fractionations associated with abiotic sulfur transformations in Yellowstone National Park geothermal springs. Geochem. Trans. 15, 7 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Hofmann, H. J., Grey, K., Hickman, A. H. & Thorpe, R. I. Origin of 3.45 Ga coniform stromatolites in Warrawoona group, Western Australia. Geol. Soc. Am. Bull. 111, 1256–1262 (1999). A pioneering discussion on criteria to use for evidencing the biogenicity of stromatolites.

    ADS  Google Scholar 

  42. 42.

    van Zuilen, M. A. Proposed early signs of life not set in stone. Nature 563, 190–191 (2018).

    ADS  PubMed  Google Scholar 

  43. 43.

    Lowe, D. R. Abiological origin of described stromatolites older than 3.2 Ga. Geology 22, 387–390 (1994).

    ADS  CAS  PubMed  Google Scholar 

  44. 44.

    Buick, R., Dunlop, J. S. R. & Groves, D. I. Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert–barite unit from North Pole, Western Australia. Alcheringa 5, 161–181 (1981).

    Google Scholar 

  45. 45.

    Buick, R., Groves, D. I. & Dunlop, J. S. Abiological origin of described stromatolites older than 3.2 Ga: comment and reply. Geology 23, 191–192 (1995).

    ADS  CAS  PubMed  Google Scholar 

  46. 46.

    McLoughlin, N., Wilson, L. A. & Brasier, M. D. Growth of synthetic stromatolites and wrinkle structures in the absence of microbes—implications for the early fossil record. Geobiology 6, 95–105 (2008).

    CAS  PubMed  Google Scholar 

  47. 47.

    Grotzinger, J. P. & Rothman, D. H. An abiotic model for stromatolite morphogenesis. Nature 383, 423–425 (1996).

    ADS  CAS  Google Scholar 

  48. 48.

    Pinti, D. L., Mineau, R. & Clement, V. Hydrothermal alteration and microfossil artefacts of the 3,465-million-year-old Apex chert. Nat. Geosci. 2, 640–643 (2009).

    ADS  CAS  Google Scholar 

  49. 49.

    Wacey, D., Noffke, N., Saunders, M., Guagliardo, P. & Pyle, D. M. Volcanogenic pseudo-fossils from the ~3.48 Ga Dresser Formation, Pilbara, Western Australia. Astrobiology 18, 539–555 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Schopf, J. W. & Packer, B. M. Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237, 70–73 (1987).

    ADS  CAS  PubMed  Google Scholar 

  51. 51.

    Schopf, J. W. & Kudryavtsev, A. B. Biogenicity of Earth’s earliest fossils: a resolution of the controversy. Gondwana Res. 22, 761–771 (2012).

    ADS  Google Scholar 

  52. 52.

    Sugitani, K. et al. Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils. Geobiology 13, 507–521 (2015).

    CAS  PubMed  Google Scholar 

  53. 53.

    Walsh, M. M. Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambr. Res. 54, 271–293 (1992).

    ADS  CAS  Google Scholar 

  54. 54.

    Ross, C. S. Microlites in glassy volcanic rocks. Am. Min. 47, 723–740 (1962).

    CAS  Google Scholar 

  55. 55.

    Wacey, D., Saunders, M. & Kong, C. Remarkably preserved tephra from the 3430 Ma Strelley Pool Formation, Western Australia: implications for the interpretation of Precambrian microfossils. Earth Planet. Sci. Lett. 487, 33–43 (2018).

    ADS  CAS  Google Scholar 

  56. 56.

    McKay, D. S. et al. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273, 924–930 (1996). This iconic and debated article suggested the presence of fossil biosignatures in a Martian meteorite, which led to the much-needed development of rigorous analytical techniques and approaches for testing the biogenicity of putative mineral traces of life.

    ADS  CAS  PubMed  Google Scholar 

  57. 57.

    Livage, J. Chemical synthesis of biomimetic forms. C. R. Palevol 8, 629–636 (2009).

    Google Scholar 

  58. 58.

    Cosmidis, J. & Templeton, A. S. Self-assembly of biomorphic carbon/sulfur microstructures in sulfidic environments. Nat. Commun. 7, 12812 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Rouillard, J., García-Ruiz, J. M., Gong, J. & van Zuilen, M. A. A morphogram for silica–witherite biomorphs and its application to microfossil identification in the early Earth rock record. Geobiology 16, 279–296 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    García-Ruiz, J. M. et al. Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302, 1194–1197 (2003). Auto-assembly of minerals in laboratory experiments may lead to biomorphs, complex morphologies similar to those of life.

    ADS  PubMed  Google Scholar 

  61. 61.

    Javaux, E. J., Knoll, A. H. & Walter, M. Recognizing and interpreting the fossils of early eukaryotes. Orig. Life Evol. Biosph. 33, 75–94 (2003). Proposition of criteria to decipher the identity of early microfossils and discriminate eukaryotes from prokaryotes.

    ADS  CAS  PubMed  Google Scholar 

  62. 62.

    Javaux, E. J., Knoll, A. H. & Walter, M. R. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2, 121–132 (2004).

    Google Scholar 

  63. 63.

    Knoll, A. H. & Barghoorn, E. S. Ambient pyrite in Precambrian chert: new evidence and a theory. Proc. Natl Acad. Sci. USA 71, 2329–2331 (1974).

    ADS  CAS  PubMed  Google Scholar 

  64. 64.

    Oehler, J. H. & Schopf, J. W. Artificial microfossils: experimental studies of permineralization of blue-green algae in silica. Science 174, 1229–1231 (1971).

    ADS  CAS  PubMed  Google Scholar 

  65. 65.

    Knoll, A. H. & Barghoorn, E. S. Precambrian eukaryotic organisms: a reassessment of the evidence. Science 190, 52–54 (1975).

    ADS  Google Scholar 

  66. 66.

    Igisu, M. et al. Changes of aliphatic C–H bonds in cyanobacteria during experimental thermal maturation in the presence or absence of silica as evaluated by FTIR microspectroscopy. Geobiology 16, 412–428 (2018).

    CAS  PubMed  Google Scholar 

  67. 67.

    Orange, F., Lalonde, S. V. & Konhauser, K. O. Experimental simulation of evaporation-driven silica sinter formation and microbial silicification in hot spring systems. Astrobiology 13, 163–176 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Miot, J., Bernard, S., Bourreau, M., Guyot, F. & Kish, A. Experimental maturation of Archaea encrusted by Fe-phosphates. Sci. Rep. 7, 16984 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Picard, A., Obst, M., Schmid, G., Zeitvogel, F. & Kappler, A. Limited influence of Si on the preservation of Fe mineral-encrusted microbial cells during experimental diagenesis. Geobiology 14, 276–292 (2016).

    CAS  PubMed  Google Scholar 

  70. 70.

    Crosby, C. H. & Bailey, J. V. Experimental precipitation of apatite pseudofossils resembling fossil embryos. Geobiology 16, 80–87 (2018).

    CAS  PubMed  Google Scholar 

  71. 71.

    Cady, S. L., Farmer, J. D., Grotzinger, J. P., Schopf, J. W. & Steele, A. Morphological biosignatures and the search for life on Mars. Astrobiology 3, 351–368 (2003).

    ADS  CAS  PubMed  Google Scholar 

  72. 72.

    McMahon, S. et al. A field guide to finding fossils on Mars. J. Geophys. Res. Planets 123, 1012–1040 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Vago, J. L. et al. Habitability on early Mars and the search for biosignatures with the ExoMars Rover. Astrobiology 17, 471–510 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Westall, F. et al. Archean (3.33 Ga) microbe–sediment systems were diverse and flourished in a hydrothermal context. Geology 43, 615–618 (2015).

    ADS  CAS  Google Scholar 

  75. 75.

    Delarue, F. et al. Investigation of the geochemical preservation of ca. 3.0 Ga permineralized and encapsulated microfossils by nanoscale secondary ion mass spectrometry. Astrobiology 17, 1192–1202 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Lepot, K. et al. Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation. Nat. Commun. 8, 14890 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Sforna, M. C. et al. Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago. Nat. Geosci. 7, 811–815 (2014).

    ADS  CAS  Google Scholar 

  78. 78.

    Stüeken, E. E. et al. Environmental niches and metabolic diversity in Neoarchean lakes. Geobiology 15, 767–783 (2017).

    PubMed  Google Scholar 

  79. 79.

    Lepot, K. et al. Extreme 13C-depletions and organic sulfur content argue for S-fueled anaerobic methane oxidation in 2.72 Ga old stromatolites. Geochim. Cosmochim. Acta 244, 522–547 (2019). This paper discusses prokaryotic metabolisms and their different or overlapping range of isotopic signatures.

    ADS  CAS  Google Scholar 

  80. 80.

    Lepot, K. et al. Organic matter heterogeneities in 2.72 Ga stromatolites: alteration versus preservation by sulfur incorporation. Geochim. Cosmochim. Acta 73, 6579–6599 (2009).

    ADS  CAS  Google Scholar 

  81. 81.

    Homann, M. et al. Microbial life and biogeochemical cycling on land 3,220 million years ago. Nat. Geosci. 11, 665–671 (2018). This paper described the earliest known microbial mats from continental fluviatile deposits.

    ADS  CAS  Google Scholar 

  82. 82.

    Demoulin, C. F. et al. Cyanobacteria evolution: insight from the fossil record. Free Radic. Biol. Med. https://doi.org/10.1016/j.freeradbiomed.2019.05.007 (2019).

  83. 83.

    Alleon, J. et al. Molecular preservation of 1.88 Ga Gunflint organic microfossils as a function of temperature and mineralogy. Nat. Commun. 7, 11977 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Brasier, M. D. et al. Critical testing of Earth’s oldest putative fossil assemblage from the 3.5 Ga Apex chert, Chinaman Creek, Western Australia. Precambr. Res. 140, 55–102 (2005).

    ADS  CAS  Google Scholar 

  85. 85.

    Hickman-Lewis, K., Cavalazzi, B., Foucher, F. & Westall, F. Most ancient evidence for life in the Barberton Greenstone Belt: microbial mats and biofabrics of the 3.47 Ga Middle Marker horizon. Precambr. Res. 312, 45–67 (2018).

    ADS  CAS  Google Scholar 

  86. 86.

    Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

    CAS  PubMed  Google Scholar 

  87. 87.

    Moreira, D. & López-García, P. The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol. 10, 31–38 (2002).

    CAS  PubMed  Google Scholar 

  88. 88.

    Spang, A. & Ettema, T. J. G. Microbial diversity: the tree of life comes of age. Nat. Microbiol. 1, 16056 (2016). This paper reports the discovery of a clade of Archaea that is close to the ancestor of eukaryotes.

    CAS  PubMed  Google Scholar 

  89. 89.

    Loron, C. C. et al. Early fungi from the Proterozoic era in Arctic Canada. Nature 570, 232–235 (2019).

    CAS  PubMed  Google Scholar 

  90. 90.

    Bell, E. A., Boehnke, P., Harrison, T. M. & Mao, W. L. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl Acad. Sci. USA 112, 14518–14521 (2015).

    ADS  CAS  PubMed  Google Scholar 

  91. 91.

    Tashiro, T. et al. Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature 549, 516–518 (2017).

    ADS  PubMed  Google Scholar 

  92. 92.

    Mojzsis, S. J. et al. Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–59 (1996).

    ADS  CAS  PubMed  Google Scholar 

  93. 93.

    Schidlowski, M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambr. Res. 106, 117–134 (2001).

    ADS  CAS  Google Scholar 

  94. 94.

    Rosing, M. T. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283, 674–676 (1999).

    ADS  CAS  PubMed  Google Scholar 

  95. 95.

    Hassenkam, T., Andersson, M. P., Dalby, K. N., Mackenzie, D. M. A. & Rosing, M. T. Elements of Eoarchean life trapped in mineral inclusions. Nature 548, 78–81 (2017).

    ADS  CAS  PubMed  Google Scholar 

  96. 96.

    Lepland, A., van Zuilen, M. A., Arrhenius, G., Whitehouse, M. J. & Fedo, C. M. Questioning the evidence for Earth’s earliest life – Akilia revisited. Geology 33, 77–79 (2005).

    ADS  Google Scholar 

  97. 97.

    Fedo, C. M. & Whitehouse, M. J. Metasomatic origin of quartz–pyroxene rock, Akilia, Greenland, and implications for Earth’s earliest life. Science 296, 1448–1452 (2002).

    ADS  CAS  PubMed  Google Scholar 

  98. 98.

    Rosing, M. T., Rose, N. M., Bridgwater, D. & Thomsen, H. S. Earliest part of Earth’s stratigraphic record: a reappraisal of the> 3.7 Ga Isua (Greenland) supracrustal sequence. Geology 24, 43–46 (1996).

    ADS  Google Scholar 

  99. 99.

    Lollar, B. S. & McCollom, T. M. Geochemistry: biosignatures and abiotic constraints on early life. Nature 444, E18 (2006).

    ADS  CAS  PubMed  Google Scholar 

  100. 100.

    Craddock, P. R. & Dauphas, N. Iron and carbon isotope evidence for microbial iron respiration throughout the Archean. Earth Planet. Sci. Lett. 303, 121–132 (2011).

    ADS  CAS  Google Scholar 

  101. 101.

    Czaja, A. D. et al. Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland). Earth Planet. Sci. Lett. 363, 192–203 (2013).

    ADS  CAS  Google Scholar 

  102. 102.

    Nie, N. X., Dauphas, N. & Greenwood, R. C. Iron and oxygen isotope fractionation during iron UV photo-oxidation: implications for early Earth and Mars. Earth Planet. Sci. Lett. 458, 179–191 (2017).

    ADS  CAS  Google Scholar 

  103. 103.

    Pflug, H. D. & Jaeschke-Boyer, H. Combined structural and chemical analysis of 3,800-Myr-old microfossils. Nature 280, 483 (1979).

    ADS  CAS  Google Scholar 

  104. 104.

    Bridgwater, D. et al. Microfossil-like objects from the Archaean of Greenland: a cautionary note. Nature 289, 51 (1981).

    ADS  Google Scholar 

  105. 105.

    Nutman, A. P., Bennett, V. C., Friend, C. R. L., Van Kranendonk, M. J. & Chivas, A. R. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537, 535–538 (2016).

    ADS  CAS  PubMed  Google Scholar 

  106. 106.

    Dodd, M. S. et al. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 60–64 (2017).

    ADS  CAS  PubMed  Google Scholar 

  107. 107.

    Van Kranendonk, M. J., Philippot, P., Lepot, K., Bodorkos, S. & Pirajno, F. Geological setting of Earth’s oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambr. Res. 167, 93–124 (2008).

    ADS  Google Scholar 

  108. 108.

    Walter, M. R., Buick, R. & Dunlop, J. S. R. Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284, 443–445 (1980).

    ADS  Google Scholar 

  109. 109.

    Ueno, Y., Isozaki, Y., Yurimoto, H. & Maruyama, S. Carbon isotopic signatures of individual Archean microfossils(?) from Western Australia. Int. Geol. Rev. 43, 196–212 (2001).

    Google Scholar 

  110. 110.

    Ueno, Y., Ono, S., Rumble, D. & Maruyama, S. Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archean. Geochim. Cosmochim. Acta 72, 5675–5691 (2008).

    ADS  CAS  Google Scholar 

  111. 111.

    Shen, Y., Farquhar, J., Masterson, A., Kaufman, A. J. & Buick, R. Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet. Sci. Lett. 279, 383–391 (2009).

    ADS  CAS  Google Scholar 

  112. 112.

    Wacey, D., Noffke, N., Cliff, J., Barley, M. E. & Farquhar, J. Micro-scale quadruple sulfur isotope analysis of pyrite from the ~3480Ma Dresser Formation: new insights into sulfur cycling on the early Earth. Precambr. Res. 258, 24–35 (2015).

    ADS  CAS  Google Scholar 

  113. 113.

    Philippot, P. et al. Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 317, 1534–1537 (2007).

    ADS  CAS  PubMed  Google Scholar 

  114. 114.

    Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. & Isozaki, Y. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440, 516–519 (2006).

    ADS  CAS  PubMed  Google Scholar 

  115. 115.

    Otálora, F. et al. A crystallographic study of crystalline casts and pseudomorphs from the 3.5 Ga Dresser Formation, Pilbara craton (Australia). J. Appl. Crystallogr. 51, 1050–1058 (2018).

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Djokic, T., Van Kranendonk, M. J., Campbel, K. A., Walter, M. R. & Ward, C. R. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat. Commun. 8, 15263 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Wacey, D., Saunders, M., Kong, C., Brasier, A. & Brasier, M. 3.46 Ga Apex chert ‘microfossils’ reinterpreted as mineral artefacts produced during phyllosilicate exfoliation. Gondwana Res. 36, 296–313 (2016).

    ADS  CAS  Google Scholar 

  118. 118.

    Brasier, M. D. et al. Questioning the evidence for Earth’s oldest fossils. Nature 416, 76–81 (2002).

    ADS  PubMed  Google Scholar 

  119. 119.

    Schopf, J. W. et al. An anaerobic 3400 Ma shallow-water microbial consortium: presumptive evidence of Earth’s Paleoarchean anoxic atmosphere. Precambr. Res. 299, 309–318 (2017).

    ADS  CAS  Google Scholar 

  120. 120.

    Hickman-Lewis, K. et al. Carbonaceous microstructures from sedimentary laminated chert within the 3.46 Ga Apex Basalt, Chinaman Creek locality, Pilbara, Western Australia. Precambr. Res. 278, 161–178 (2016).

    ADS  CAS  Google Scholar 

  121. 121.

    Knoll, A. H. & Barghoorn, E. S. Archean microfossils showing cell division from the Swaziland System of South Africa. Science 198, 396–398 (1977).

    ADS  CAS  PubMed  Google Scholar 

  122. 122.

    Byerly, G. R., Lowe, D. R. & Walsh, M. M. Stromatolites from the 3,300–3,500 Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature 319, 489–491 (1986).

    ADS  CAS  Google Scholar 

  123. 123.

    Walsh, M. M. & Lowe, D. R. Filamentous microfossils from the 3,500-Myr-old Onverwacht Group, Barberton Mountain Land, South Africa. Nature 314, 530 (1985).

    ADS  Google Scholar 

  124. 124.

    Oehler, D. Z., Walsh, M. M., Sugitani, K., Liu, M. C. & House, C. H. Large and robust lenticular microorganisms on the young Earth. Precambr. Res. 296, 112–119 (2017).

    ADS  CAS  Google Scholar 

  125. 125.

    Tice, M. M. & Lowe, D. R. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431, 549–552 (2004).

    ADS  CAS  PubMed  Google Scholar 

  126. 126.

    Allwood, A. C., Walter, M. R., Burch, I. W. & Kamber, B. S. 3.43 billion-year-old stromatolite reef from the Pilbara craton of Western Australia: ecosystem-scale insights to early life on Earth. Precambr. Res. 158, 198–227 (2007).

    ADS  CAS  Google Scholar 

  127. 127.

    Hickman, A. H. Regional Review of the 3426–3350 Ma Strelley Pool Formation, Pilbara Craton, Western Australia (Western Australia Geological Survey Record 2008/15) (Geological Survey of Western Australia, 2008).

  128. 128.

    Awramik, S. M. Respect for stromatolites. Nature 441, 700–701 (2006).

    ADS  CAS  PubMed  Google Scholar 

  129. 129.

    Lowe, D. R. Stromatolites 3,400-Myr old from the Archean of Western Australia. Nature 284, 441–443 (1980).

    ADS  Google Scholar 

  130. 130.

    Allwood, A. C., Kamber, B. S., Walter, M. R., Burch, I. W. & Kanik, I. Trace elements record depositional history of an Early Archean stromatolitic carbonate platform. Chem. Geol. 270, 148–163 (2010).

    ADS  CAS  Google Scholar 

  131. 131.

    Wacey, D. Stromatolites in the ~3400 Ma Strelley Pool Formation, Western Australia: examining biogenicity from the macro- to the nano-scale. Astrobiology 10, 381–395 (2010).

    ADS  CAS  PubMed  Google Scholar 

  132. 132.

    Flannery, D. T. et al. Spatially-resolved isotopic study of carbon trapped in 3.43 Ga Strelley Pool Formation stromatolites. Geochim. Cosmochim. Acta 223, 21–35 (2018).

    ADS  CAS  Google Scholar 

  133. 133.

    Bontognali, T. R. R. et al. Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism. Proc. Natl Acad. Sci. USA 109, 15146–15151 (2012).

    ADS  CAS  PubMed  Google Scholar 

  134. 134.

    Buick, R. The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science 255, 74–77 (1992).

    ADS  CAS  PubMed  Google Scholar 

  135. 135.

    Oehler, D. Z. et al. Diversity in the Archean biosphere: new insights from NanoSIMS. Astrobiology 10, 413–424 (2010).

    ADS  CAS  PubMed  Google Scholar 

  136. 136.

    Lepot, K. et al. Texture-specific isotopic compositions in 3.4 Gyr old organic matter support selective preservation in cell-like structures. Geochim. Cosmochim. Acta 112, 66–86 (2013).

    ADS  CAS  Google Scholar 

  137. 137.

    House, C. H., Oehler, D. Z., Sugitani, K. & Mimura, K. Carbon isotopic analyses of ca. 3.0 Ga microstructures imply planktonic autotrophs inhabited Earth’s early oceans. Geology 41, 651–654 (2013).

    ADS  CAS  Google Scholar 

  138. 138.

    Delarue, F. et al. Nitrogen isotope signatures of microfossils suggest aerobic metabolism 3.0 Gyr ago. Geochemical Perspect. Lett. 7, 32–36 (2018).

    Google Scholar 

  139. 139.

    Mitchell, A. J. & Wimpenny, J. W. T. The effects of agar concentration on the growth and morphology of submerged colonies of motile and non-motile bacteria. J. Appl. Microbiol. 83, 76–84 (1997).

    CAS  PubMed  Google Scholar 

  140. 140.

    Su, P. T. et al. Bacterial colony from two-dimensional division to three-dimensional development. PLoS ONE 7, e48098 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Heubeck, C. An early ecosystem of Archean tidal microbial mats (Moodies Group, South Africa, ca. 3.2 Ga). Geology 37, 931–934 (2009).

    ADS  Google Scholar 

  142. 142.

    Buick, R. Early life: ancient acritarchs. Nature 463, 885–886 (2010).

    ADS  CAS  PubMed  Google Scholar 

  143. 143.

    Stüeken, E. E., Buick, R., Guy, B. M. & Koehler, M. C. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 520, 666–669 (2015).

    ADS  PubMed  Google Scholar 

  144. 144.

    Nabhan, S., Wiedenbeck, M., Milke, R. & Heubeck, C. Biogenic overgrowth on detrital pyrite in ca. 3.2 Ga Archean paleosols. Geology 44, 763–766 (2016).

    ADS  CAS  Google Scholar 

  145. 145.

    Miao, L., Moczydłowska, M. & Zhu, S. M. New record of organic-walled, morphologically distinct microfossils from the late Paleoproterozoic Changcheng Group in the Yanshan Range, North China. Precambr. Res. 321, 172–198 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the European Research Council StG ELiTE FP7/308074 and the Belgian FRS-FNRS-FWO Excellence of Science project ET-HOME. N. Butterfield, J. Cosmidis, C. Demoulin, A. H. Knoll and K. Lepot are acknowledged for providing some of the images. I thank many colleagues for fruitful discussions over the years, and I apologize for all the work that could not be cited, owing to limitations of space.

Author information

Affiliations

Authors

Contributions

E.J.J. wrote the manuscript.

Corresponding author

Correspondence to Emmanuelle J. Javaux.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Nature thanks Shuhai Xiao and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Javaux, E.J. Challenges in evidencing the earliest traces of life. Nature 572, 451–460 (2019). https://doi.org/10.1038/s41586-019-1436-4

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing