Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global entangling gates on arbitrary ion qubits

Abstract

Quantum computers can efficiently solve classically intractable problems, such as the factorization of a large number1 and the simulation of quantum many-body systems2,3. Universal quantum computation can be simplified by decomposing circuits into single- and two-qubit entangling gates4, but such decomposition is not necessarily efficient. It has been suggested that polynomial or exponential speedups can be obtained with global N-qubit (N greater than two) entangling gates5,6,7,8,9. Such global gates involve all-to-all connectivity, which emerges among trapped-ion qubits when using laser-driven collective motional modes10,11,12,13,14, and have been implemented for a single motional mode15,16. However, the single-mode approach is difficult to scale up because isolating single modes becomes challenging as the number of ions increases in a single crystal, and multi-mode schemes are scalable17,18 but limited to pairwise gates19,20,21,22,23. Here we propose and implement a scalable scheme for realizing global entangling gates on multiple 171Yb+ ion qubits by coupling to multiple motional modes through modulated laser fields. Because such global gates require decoupling multiple modes and balancing all pairwise coupling strengths during the gate, we develop a system with fully independent control capability on each ion14. To demonstrate the usefulness and flexibility of these global gates, we generate a Greenberger–Horne–Zeilinger state with up to four qubits using a single global operation. Our approach realizes global entangling gates as scalable building blocks for universal quantum computation, motivating future research in scalable global methods for quantum information processing.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Global entangling gate and its experimental implementation.
Fig. 2: Experimental implementation of a global three-qubit entangling gate.
Fig. 3: Experimental implementation and results of the global entangling gates in three-ion qubits.
Fig. 4: Experimental implementation and results of the global entangling gate in a four-ion system.

Data availability

All relevant data are available from the corresponding authors upon request.

References

  1. Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997).

    MathSciNet  Article  Google Scholar 

  2. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    MathSciNet  Article  Google Scholar 

  3. Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  4. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).

  5. Casanova, J., Mezzacapo, A., Lamata, L. & Solano, E. Quantum simulation of interacting fermion lattice models in trapped ions. Phys. Rev. Lett. 108, 190502 (2012).

    ADS  CAS  Article  Google Scholar 

  6. Yung, M.-H. et al. From transistor to trapped-ion computers for quantum chemistry. Sci. Rep. 4, 3589 (2015).

    Article  Google Scholar 

  7. Ivanov, S. S., Ivanov, P. A. & Vitanov, N. V. Efficient construction of three- and four-qubit quantum gates by global entangling gates. Phys. Rev. A 91, 032311 (2015).

    ADS  Article  Google Scholar 

  8. Martinez, E. A., Monz, T., Nigg, D., Schindler, P. & Blatt, R. Compiling quantum algorithms for architectures with multi-qubit gates. New J. Phys. 18, 063029 (2016).

    ADS  Article  Google Scholar 

  9. Maslov, D. & Nam, Y. Use of global interactions in efficient quantum circuit constructions. New J. Phys. 20, 033018 (2018).

    ADS  Article  Google Scholar 

  10. Kim, K. et al. Entanglement and tunable spin–spin couplings between trapped ions using multiple transverse modes. Phys. Rev. Lett. 103, 120502 (2009).

    ADS  CAS  Article  Google Scholar 

  11. Britton, J. W. et al. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012).

    ADS  CAS  Article  Google Scholar 

  12. Senko, C. et al. Coherent imaging spectroscopy of a quantum many-body spin system. Science 345, 430–433 (2014).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  13. Jurcevic, P. et al. Spectroscopy of interacting quasiparticles in trapped ions. Phys. Rev. Lett. 115, 100501 (2015).

    ADS  CAS  Article  Google Scholar 

  14. Debnath, S. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63–66 (2016).

    ADS  CAS  Article  Google Scholar 

  15. Monz, T. et al. 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011).

    ADS  Article  Google Scholar 

  16. Lanyon, B. P. et al. Universal digital quantum simulation with trapped ions. Science 334, 57–61 (2011).

    ADS  CAS  Article  Google Scholar 

  17. García-Ripoll, J. J., Zoller, P. & Cirac, J. I. Coherent control of trapped ions using off-resonant lasers. Phys. Rev. A 71, 062309 (2005).

    ADS  Article  Google Scholar 

  18. Zhu, S.-L., Monroe, C. & Duan, L.-M. Trapped ion quantum computation with transverse phonon modes. Phys. Rev. Lett. 97, 050505 (2006).

    ADS  Article  Google Scholar 

  19. Steane, A. M., Imreh, G., Home, J. P. & Leibfried, D. Pulsed force sequences for fast phase-insensitive quantum gates in trapped ions. New J. Phys. 16, 053049 (2014).

    ADS  Article  Google Scholar 

  20. Choi, T. et al. Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement. Phys. Rev. Lett. 112, 190502 (2014).

    ADS  CAS  Article  Google Scholar 

  21. Leung, P. H. et al. Robust 2-qubit gates in a linear ion crystal using a frequency-modulated driving force. Phys. Rev. Lett. 120, 020501 (2018).

    ADS  CAS  Article  Google Scholar 

  22. Milne, A. R. et al. Phase-modulated entangling gates robust against static and time-varying errors. Preprint at https://arxiv.org/abs/1808.10462 (2018).

  23. Schäfer, V. M. et al. Fast quantum logic gates with trapped-ion qubits. Nature 555, 75–78 (2018).

    ADS  Article  Google Scholar 

  24. Kaufmann, H. et al. Scalable creation of long-lived multipartite entanglement. Phys. Rev. Lett. 119, 150503 (2017).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  25. Haljan, P. C., Brickman, K.-A., Deslauriers, L., Lee, P. J. & Monroe, C. Spin-dependent forces on trapped ions for phase-stable quantum gates and entangled states of spin and motion. Phys. Rev. Lett. 94, 153602 (2005).

    ADS  CAS  Article  Google Scholar 

  26. Lechner, R. et al. Electromagnetically-induced-transparency ground-state cooling of long ion strings. Phys. Rev. A 93, 053401 (2016).

    ADS  Article  Google Scholar 

  27. Webb, A. E. et al. Resilient entangling gates for trapped ions. Phys. Rev. Lett. 121, 180501 (2018).

    ADS  CAS  Article  Google Scholar 

  28. Shapira, Y., Shaniv, R., Manovitz, T., Akerman, N. & Ozeri, R. Robust entanglement gates for trapped-ion qubits. Phys. Rev. Lett. 121, 180502 (2018).

    ADS  CAS  Article  Google Scholar 

  29. Roos, C. F. Ion trap quantum gates with amplitude-modulated laser beams. New J. Phys. 10, 013002 (2008).

    Article  Google Scholar 

  30. Olmschenk, S. et al. Manipulation and detection of a trapped Yb+ hyperfine qubit. Phys. Rev. A 76, 052314 (2007).

    ADS  Article  Google Scholar 

  31. Hayes, D. et al. Entanglement of atomic qubits using an optical frequency comb. Phys. Rev. Lett. 104, 140501 (2010).

    ADS  CAS  Article  Google Scholar 

  32. Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

    ADS  CAS  Article  Google Scholar 

  33. Figgatt, C. et al. Parallel entangling operations on a universal ion trap quantum computer. Nature https://doi.org/10.1038/s41586-019-1427-5 (2019).

  34. Duan, L.-M. & Shen, C. Correcting detection errors in quantum state engineering through data processing. New J. Phys. 14, 1778–1782 (2012).

    Google Scholar 

  35. Richerme, P. et al. Non-local propagation of correlations in quantum systems with long-range interactions. Nature 511, 198–201 (2014).

    ADS  CAS  Article  Google Scholar 

  36. James, D. F. V. Quantum dynamics of cold trapped ions with application to quantum computation. Appl. Phys. B 66, 181–190 (1998).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China under grants 2016YFA0301900 and 2016YFA0301901 and the National Natural Science Foundation of China under grants 11574002 and 11504197.

Reviewer information

Nature thanks Chris Ballance, Roee Ozeri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Y.L., S.Z., K.Z., W.C. and Y.S. developed the experimental system. Y.L. and K.Z., together with J.-N.Z., investigated the theoretical schemes and optimized the pulse sequences. Y.L. and S.Z. obtained the data. K.K. supervised the project. Y.L. led the writing of the manuscript, with contributions from all authors.

Corresponding authors

Correspondence to Yao Lu or Kihwan Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Comparison between gate durations of single- and multi-mode approaches.

For the given trap frequencies, the gate duration τ of the single-mode approach grows faster than linearly (τ ≈ N2.4) to maintain the fidelity F when the number of ions, N, increases. The gate duration of the multi-mode approach grows near linearly, with a theoretical fidelity of unity. The vertical axis is on a logarithmic scale.

Extended Data Fig. 2 Side view of the experimental ion-trap system.

The figure shows the structure of the blade trap. The radiofrequency potential is applied to the RF electrodes and the direct-current (DC) electrodes are connected to the direct-current potential. A static magnetic field of B ≈ 6 × 10−4 T is applied along the direction shown in the figure. The cover-all beam goes through the side viewport and is focused at the ion-chain position into an elliptical Gaussian beam, with waists of about 30 μm along the ion chain and about 5 μm in the perpendicular direction. The individual beams go through the bottom re-entry viewport and have a focused radius of about 1 μm at the ion position. The average laser power is around 120 mW for the cover-all beam and around 1 mW for each individual beam. The effective wave vector Δk of the two Raman beams is almost in the x direction, and the beams are polarized linearly, perpendicular to each other.

Extended Data Fig. 3 Motional trajectories in phase space for the global four-qubit entangling gate.

Because we apply different modulated-phase patterns to the qubits (1, 4) and (2, 3), the shapes of the motional trajectories in ad and eh are different.

Extended Data Table 1 Pulse scheme for the global three-qubit entangling gate
Extended Data Table 2 Pulse scheme for the global four-qubit entangling gate

Supplementary information

Supplementary Information

This file contains Supplementary Methods.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Zhang, S., Zhang, K. et al. Global entangling gates on arbitrary ion qubits. Nature 572, 363–367 (2019). https://doi.org/10.1038/s41586-019-1428-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-019-1428-4

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing