Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nonlinear optics in the fractional quantum Hall regime


Engineering strong interactions between optical photons is a challenge for quantum science. Polaritonics, which is based on the strong coupling of photons to atomic or electronic excitations in an optical resonator, has emerged as a promising approach to address this challenge, paving the way for applications such as photonic gates for quantum information processing1 and photonic quantum materials for the investigation of strongly correlated driven–dissipative systems2,3. Recent experiments have demonstrated the onset of quantum correlations in exciton-polariton systems4,5, showing that strong polariton blockade6—the prevention of resonant injection of additional polaritons in a well delimited region by the presence of a single polariton—could be achieved if interactions were an order of magnitude stronger. Here we report time-resolved four-wave-mixing experiments on a two-dimensional electron system embedded in an optical cavity7, demonstrating that polariton–polariton interactions are strongly enhanced when the electrons are initially in the fractional quantum Hall regime. Our experiments indicate that, in addition to strong correlations in the electronic ground state, exciton–electron interactions leading to the formation of polaron-polaritons8,9,10,11 have a key role in enhancing the nonlinear optical response of the system. Our findings could facilitate the realization of strongly interacting photonic systems, and suggest that nonlinear optical measurements could provide information about fractional quantum Hall states that is not accessible through their linear optical response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum Hall polaritons.
Fig. 2: Time-resolved measurement of interactions between polaron-polaritons.
Fig. 3: Enhancing interactions between quantum Hall polaritons at fractional filling factors.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the ETH Research Collection (


  1. O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  2. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  ADS  Google Scholar 

  3. Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    Article  ADS  CAS  Google Scholar 

  4. Muñoz-Matutano, G. et al. Emergence of quantum correlations from interacting fibre-cavity polaritons. Nat. Mater. 18, 213–218 (2019).

    Article  Google Scholar 

  5. Delteil, A. et al. Towards polariton blockade of confined exciton-polaritons. Nat. Mater. 18, 219–222 (2019).

    Article  CAS  Google Scholar 

  6. Verger, A., Ciuti, C. & Carusotto, I. Polariton quantum blockade in a photonic dot. Phys. Rev. B 73, 193306 (2006).

    Article  ADS  Google Scholar 

  7. Smolka, S. et al. Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas. Science 346, 332–335 (2014).

    Article  ADS  CAS  Google Scholar 

  8. Schmidt, R., Enss, T., Pietilä, V. & Demler, E. Fermi polarons in two dimensions. Phys. Rev. A 85, 021602 (2012).

    Article  ADS  Google Scholar 

  9. Sidler, M. et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 13, 255–261 (2017).

    Article  CAS  Google Scholar 

  10. Efimkin, D. K. & MacDonald, A. H. Exciton-polarons in doped semiconductors in a strong magnetic field. Phys. Rev. B 97, 235432 (2018).

    Article  ADS  CAS  Google Scholar 

  11. Ravets, S. et al. Polaron polaritons in the integer and fractional quantum Hall regimes. Phys. Rev. Lett. 120, 057401 (2018).

    Article  ADS  CAS  Google Scholar 

  12. Jia, N. et al. A strongly interacting polaritonic quantum dot. Nat. Phys. 14, 550–554 (2018).

    Article  CAS  Google Scholar 

  13. Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

    Article  ADS  CAS  Google Scholar 

  14. Ferrier, L. et al. Interactions in confined polariton condensates. Phys. Rev. Lett. 106, 126401 (2011).

    Article  ADS  Google Scholar 

  15. Sun, Y. et al. Bose–Einstein condensation of long-lifetime polaritons in thermal equilibrium. Phys. Rev. Lett. 118, 016602 (2017).

    Article  ADS  Google Scholar 

  16. Takemura, N., Trebaol, S., Wouters, M., Portella-Oberli, M. T. & Deveaud, B. Polaritonic Feshbach resonance. Nat. Phys. 10, 500–504 (2014).

    Article  CAS  Google Scholar 

  17. Cristofolini, P. et al. Coupling quantum tunneling with cavity photons. Science 336, 704–707 (2012).

    Article  ADS  CAS  Google Scholar 

  18. Rosenberg, I. et al. Strongly interacting dipolar-polaritons. Sci. Adv. 4, eaat8880 (2018).

    Article  ADS  Google Scholar 

  19. Togan, E., Lim, H.-T., Faelt, S., Wegscheider, W. & Imamoglu, A. Enhanced interactions between dipolar polaritons. Phys. Rev. Lett. 121, 227402 (2018).

    Article  ADS  CAS  Google Scholar 

  20. Kukushkin, I. V., V. Klitzing, K. & Eberl, K. Spin polarization of composite fermions: measurements of the Fermi energy. Phys. Rev. Lett. 82, 3665–3668 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Byszewski, M. et al. Optical probing of composite fermions in a two-dimensional electron gas. Nat. Phys. 2, 239–243 (2006).

    Article  CAS  Google Scholar 

  22. Groshaus, J. G. et al. Absorption in the fractional quantum Hall regime: trion dichroism and spin polarization. Phys. Rev. Lett. 98, 156803 (2007).

    Article  ADS  CAS  Google Scholar 

  23. Bar-Joseph, I. Trions in GaAs quantum wells. Semicond. Sci. Technol. 20, R29–R39 (2005).

    Article  ADS  CAS  Google Scholar 

  24. Hayakawa, J., Muraki, K. & Yusa, G. Real-space imaging of fractional quantum Hall liquids. Nat. Nanotechnol. 8, 31–35 (2013).

    Article  ADS  CAS  Google Scholar 

  25. Bartolo, N. & Ciuti, C. Vacuum-dressed cavity magnetotransport of a two-dimensional electron gas. Phys. Rev. B 98, 205301 (2018).

    Article  ADS  CAS  Google Scholar 

  26. Paravicini-Bagliani, G. L. et al. Magneto-transport controlled by Landau polariton states. Nat. Phys. 15, 186–190 (2019).

    Article  CAS  Google Scholar 

  27. Rapaport, R. et al. Negatively charged quantum well polaritons in a GaAs/AlAs microcavity: an analog of atoms in a cavity. Phys. Rev. Lett. 84, 1607–1610 (2000).

    Article  ADS  CAS  Google Scholar 

  28. Rapaport, R., Cohen, E., Ron, A., Linder, E. & Pfeiffer, L. N. Negatively charged polaritons in a semiconductor microcavity. Phys. Rev. B 63, 235310 (2001).

    Article  ADS  Google Scholar 

  29. Suris, R. A. In Optical Properties of 2D Systems with Interacting Electrons (eds Ossau, W. J. & Suris, R.) 111–124 (Springer Science and Business Media, 2003).

  30. Rodriguez, S. R. K. et al. Interaction-induced hopping phase in driven-dissipative coupled photonic microcavities. Nat. Commun. 7, 11887 (2016).

    Article  ADS  CAS  Google Scholar 

  31. Brichkin, A. S. et al. Effect of Coulomb interaction on exciton-polariton condensates in GaAs pillar microcavities. Phys. Rev. B 84, 195301 (2011).

    Article  ADS  Google Scholar 

  32. Walker, P. et al. Dark solitons in high velocity waveguide polariton fluids. Phys. Rev. Lett. 119, 09703 (2017).

    Article  Google Scholar 

  33. Stepanov, P. et al. Dispersion relation of the collective excitations in a resonantly driven polariton fluid. Preprint at

  34. Boyd, R. W. Nonlinear Optics (Elsevier, 2008).

  35. Hall, K. L., Lenz, G., Ippen, E. P. & Raybon, G. Heterodyne pump–probe technique for time-domain studies of optical nonlinearities in waveguides. Opt. Lett. 17, 874–876 (1992).

    Article  ADS  CAS  Google Scholar 

  36. Mecozzi, A. & Mørk, J. Transient and time-resolved four-wave mixing with collinear pump and probe pulses using the heterodyne technique. J. Eur. Opt. Soc. A 7, 335–344 (1998).

    Google Scholar 

  37. Patton, B., Woggon, U. & Langbein, W. Coherent control and polarization readout of individual excitonic states. Phys. Rev. Lett. 95, 266401 (2005).

    Article  ADS  CAS  Google Scholar 

  38. Kohnle, V. et al. Four-wave mixing excitations in a dissipative polariton quantum fluid. Phys. Rev. B 86, 064508 (2012).

    Article  ADS  Google Scholar 

  39. Nardin, G., Autry, T. M., Silverman, K. L. & Cundiff, S. T. Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure. Opt. Express 21, 28617 (2013).

    Article  ADS  Google Scholar 

  40. Smallwood, C. L. & Cundiff, S. T. Multidimensional coherent spectroscopy of semiconductors. Laser Photonics Rev. 12, 1800171 (2018).

    Article  ADS  Google Scholar 

  41. Wouters, M. & Carusotto, I. Excitations in a nonequilibrium Bose–Einstein condensate of exciton polaritons. Phys. Rev. Lett. 99, 140402 (2007).

    Article  ADS  Google Scholar 

  42. Keeling, J. & Berloff, N. G. Spontaneous rotating vortex lattices in a pumped decaying condensate. Phys. Rev. Lett. 100, 250401 (2008).

    Article  ADS  Google Scholar 

  43. Ciuti, C., Savona, V., Piermarocchi, C., Quattropani, A. & Schwendimann, P. Role of the exchange of carriers in elastic exciton-exciton scattering in quantum wells. Phys. Rev. B 58, 7926–7933 (1998).

    Article  ADS  CAS  Google Scholar 

  44. Tassone, F. & Yamamoto, Y. Exciton–exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B 59, 10830–10842 (1999).

    Article  ADS  CAS  Google Scholar 

  45. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).

    Article  CAS  Google Scholar 

  46. Byrnes, T., Kolmakov, G. V., Kezerashvili, R. Y. & Yamamoto, Y. Effective interaction and condensation of dipolaritons in coupled quantum wells. Phys. Rev. B 90, 125314 (2014).

    Article  ADS  Google Scholar 

  47. Nalitov, A. V., Solnyshkov, D. D., Gippius, N. A. & Malpuech, G. Voltage control of the spin-dependent interaction constants of dipolaritons and its application to optical parametric oscillators. Phys. Rev. B 90, 235304 (2014).

    Article  ADS  Google Scholar 

Download references


We acknowledge discussions with J. Bloch, A. Browaeys, T. Chervy, O. Cotlet, A. Delteil, T. Grass, M. Hafezi, E. Togan, S. Zeytinoglu and O. Zilberberg. We thank M. Lupatini for the neutral quantum well reference sample. This work was supported by the Swiss National Science Foundation (NCCR Quantum Science and Technology) through an ETH Fellowship (S.R.). This project received funding from the European Research Council under grant agreement 671000.

Author information

Authors and Affiliations



P.K. and S.R. performed and analysed the measurements. S.F. and W.W. grew the sample. S.R., M.K. and A.I. supervised the work. P.K., S.R., M.K. and A.I. wrote the manuscript.

Corresponding authors

Correspondence to Sylvain Ravets or Atac Imamoglu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Experimental setup.

Schematic of the interferometer used for measuring the nonlinear response of the system. PBS, polarizing beam splitter; BS, beam splitter.

Extended Data Fig. 2 White-light reflectivity measurements.

a, Evolution of the reflectivity spectra while tuning the cavity energy across the exciton resonance. The red line in a marks the cavity energy for the spectrum shown in b. b, Background-subtracted spectrum (blue dots). The black line shows a Lorentzian fit to the spectrum. From the peak areas we determine the exciton content |X|2 = 0.7. The LP amplitude is ηc = 0.24.

Extended Data Fig. 3 Comparison between data from undoped quantum well sample and GPE.

Top row, comparison between measured (green circles) and calculated (red shaded area) \({\mathscr{I}}({\omega }_{{\rm{m}}},\tau )\) for different input powers, used to calibrate the detection efficiency ϕ. Bottom row, comparison between measured (purple circles) and calculated (red shaded area) \({\mathscr{I}}(3{\omega }_{{\rm{m}}},\tau )\) for different input powers, yielding a value of g = 0.54 μeV for the polariton interaction strength.

Extended Data Fig. 4 Estimation of interaction constant at ν = 2/5.

a, White-light reflectivity spectra as a function of magnetic field. b, Line cut of the data (blue circles) at B = 3.2 T and a fit (black line) consisting of three Lorentzian resonances. c, Comparison of the linear (\({\mathscr{I}}({\omega }_{{\rm{m}}},\tau )\); top row, green circles) and nonlinear (\({\mathscr{I}}(3{\omega }_{{\rm{m}}},\tau )\); bottom row, purple circles) response at ν = 2/5 with the GPE model (red).

Extended Data Fig. 5 Increase in polariton coherence time with input power at fractional quantum Hall states.

a, Extraction of TLP , showing an exemplary linear response (in a logarithmic scale) and the fit to the envelope (black line). The inverse slope corresponds to TLP. bd, Dependence of TLP on the input power for the filling factors considered. Blue circles correspond to the magnetic field at the quantum Hall state and orange circles to magnetic fields tuned to nearby filling factors.

Extended Data Fig. 6 Data from a high-electron-density sample.

a, White-light reflectivity spectrum recorded using σ polarized light. At B = 8.6 T, the optical signature of ν = 2/3 shows as a reduction in the polariton splitting around 1,527 meV (note that the upper polariton is particularly faint). b, Four-wave-mixing experiment around filling factor ν = 2/3. The top row shows \({\mathscr{I}}({\omega }_{{\rm{m}}},\tau )\) and the bottom row shows \({\mathscr{I}}(3{\omega }_{{\rm{m}}},\tau )\). All data have been normalized to the maximal value of \({\mathscr{I}}({\omega }_{{\rm{m}}},\tau )\) at B = 8.65 T (red diamond). The integration time is 10 s and the input power is 35 ± 5 nW.

Extended Data Table 1 Comparison of interaction constants and LP linewidths

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knüppel, P., Ravets, S., Kroner, M. et al. Nonlinear optics in the fractional quantum Hall regime. Nature 572, 91–94 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing