Light-wave dynamic control of magnetism

Abstract

The enigmatic interplay between electronic and magnetic phenomena observed in many early experiments and outlined in Maxwell’s equations propelled the development of modern electromagnetism1. Today, the fully controlled evolution of the electric field of ultrashort laser pulses enables the direct and ultrafast tuning of the electronic properties of matter, which is the cornerstone of light-wave electronics2,3,4,5,6,7. By contrast, owing to the lack of first-order interaction between light and spin, the magnetic properties of matter can only be affected indirectly and on much longer timescales, through a sequence of optical excitations and subsequent rearrangement of the spin structure8,9,10,11,12,13,14,15,16. Here we introduce the regime of ultrafast coherent magnetism and show how the magnetic properties of a ferromagnetic layer stack can be manipulated directly by the electric-field oscillations of light, reducing the magnetic response time to an external stimulus by two orders of magnitude. To track the unfolding dynamics in real time, we develop an attosecond time-resolved magnetic circular dichroism detection scheme, revealing optically induced spin and orbital momentum transfer in synchrony with light-field-driven coherent charge relocation17. In tandem with ab initio quantum dynamical modelling, we show how this mechanism enables the simultaneous control of electronic and magnetic properties that are essential for spintronic functionality. Our study unveils light-field coherent control of spin dynamics and macroscopic magnetic moments in the initial non-dissipative temporal regime and establishes optical frequencies as the speed limit of future coherent spintronic applications, spin transistors and data storage media.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Attosecond MCD for the study of ultrafast magnetism.
Fig. 2: Attosecond MCD measurements of light-field-induced coherent spin transfer.
Fig. 3: Optically induced spin-transfer, post-excitation spin dynamics and quantum dynamical modelling.

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. 1.

    Ørstedt, J. C. Experimenta circa effectum conflictus electrici in acum magneticam. J. Chem. Phys. 29, 275–281 (1820).

    Google Scholar 

  2. 2.

    Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013); addendum 507, 386–387 (2014).

    ADS  Article  Google Scholar 

  3. 3.

    Schultze, M. et al. Attosecond band-gap dynamics in silicon. Science 346, 1348–1352 (2014).

    ADS  CAS  Article  Google Scholar 

  4. 4.

    Mashiko, H., Oguri, K., Yamaguchi, T., Suda, A. & Gotoh, H. Petahertz optical drive with wide-bandgap semiconductor. Nat. Phys. 12, 741–745 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Lucchini, M. et al. Attosecond dynamical Franz–Keldysh effect in polycrystalline diamond. Science 353, 916–919 (2016).

    ADS  CAS  Article  Google Scholar 

  6. 6.

    Garg, M. et al. Multi-petahertz electronic metrology. Nature 538, 359–363 (2016).

    ADS  CAS  Article  Google Scholar 

  7. 7.

    Reimann, J. et al. Subcycle observation of lightwave-driven Dirac currents in a topological surface band. Nature 562, 396–400 (2018).

    ADS  CAS  Article  Google Scholar 

  8. 8.

    Bigot, J.-Y., Vomir, M. & Beaurepaire, E. Coherent ultrafast magnetism induced by femtosecond laser pulses. Nat. Phys. 5, 515–520 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    Boeglin, C. et al. Distinguishing the ultrafast dynamics of spin and orbital moments in solids. Nature 465, 458–461 (2010).

    ADS  CAS  Article  Google Scholar 

  10. 10.

    Walowski, J. & Münzenberg, M. Ultrafast magnetism and THz spintronics. J. Appl. Phys. 120, 140901 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Koopmans, B. et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nat. Mater. 9, 259–265 (2010).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    Hellman, F. et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 89, 025006 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

    ADS  Article  Google Scholar 

  14. 14.

    Battiato, M., Carva, K. & Oppeneer, P. M. Superdiffusive spin transport as a mechanism of ultrafast demagnetization. Phys. Rev. Lett. 105, 027203 (2010).

    ADS  CAS  Article  Google Scholar 

  15. 15.

    Stamm, C. et al. Femtosecond modification of electron localization and transfer of angular momentum in nickel. Nat. Mater. 6, 740–743 (2007).

    ADS  CAS  Article  Google Scholar 

  16. 16.

    Rudolf, D. et al. Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current. Nat. Commun. 3, 1037 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    Dewhurst, J. K., Elliott, P., Shallcross, S., Gross, E. K. U. & Sharma, S. Laser-induced intersite spin transfer. Nano Lett. 18, 1842–1848 (2018).

    ADS  CAS  Article  Google Scholar 

  18. 18.

    Lambert, C.-H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).

    ADS  CAS  Article  Google Scholar 

  19. 19.

    Bandrauk, A. D., Guo, J. & Yuan, K.-J. Circularly polarized attosecond pulse generation and applications to ultrafast magnetism. J. Opt. 19, 124016 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Laman, N., Bieler, M. & van Driel, H. M. Ultrafast shift and injection currents observed in wurtzite semiconductors via emitted terahertz radiation. J. Appl. Phys. 98, 103507 (2005).

    ADS  Article  Google Scholar 

  21. 21.

    Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    ADS  CAS  Article  Google Scholar 

  22. 22.

    Schweinberger, W. et al. Waveform-controlled near-single-cycle milli-joule laser pulses generate sub-10 nm extreme ultraviolet continua. Opt. Lett. 37, 3573–3575 (2012).

    ADS  Article  Google Scholar 

  23. 23.

    Fieß, M. et al. Versatile apparatus for attosecond metrology and spectroscopy. Rev. Sci. Instrum. 81, 093103 (2010).

    ADS  Article  Google Scholar 

  24. 24.

    Carra, P., Thole, B. T., Altarelli, M. & Wang, X. X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 70, 694–697 (1993).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Höchst, H., Patel, R. & Middleton, F. Multiple-reflection λ4 phase shifter: a viable alternative to generate circular-polarized synchrotron radiation. Nucl. Instrum. Meth. A 347, 107–114 (1994).

    ADS  Article  Google Scholar 

  26. 26.

    Willems, F. et al. Probing ultrafast spin dynamics with high-harmonic magnetic circular dichroism spectroscopy. Phys. Rev. B 92, 220405 (2015).

    ADS  Article  Google Scholar 

  27. 27.

    Kaindl, G., Brewer, W. D., Kalkowski, G. & Holtzberg, F. M-edge X-ray absorption spectroscopy: a new tool for dilute mixed-valent materials. Phys. Rev. Lett. 51, 2056–2059 (1983).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Ghimire, S. et al. Strong-field and attosecond physics in solids. J. Phys. B 47, 204030 (2014).

    ADS  Article  Google Scholar 

  29. 29.

    Dewhurst, J. K., Shallcross, S., Gross, E. K. U. & Sharma, S. Substrate-controlled ultrafast spin injection and demagnetization. Phys. Rev. Appl. 10, 044065 (2018).

    ADS  CAS  Article  Google Scholar 

  30. 30.

    Li, T. et al. Femtosecond switching of magnetism via strongly correlated spin-charge quantum excitations. Nature 496, 69–73 (2013).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Krieger, K. et al. Ultrafast demagnetization in bulk versus thin films: an ab initio study. J. Phys. Condens. Matter 29, 224001 (2017).

    ADS  CAS  Article  Google Scholar 

  33. 33.

    von Barth, U. & Hedin, L. A local exchange-correlation potential for the spin polarized case. J. Phys. C 5, 1629–1642 (1972).

    ADS  Article  Google Scholar 

  34. 34.

    Hedin, L. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139, A796–A823 (1965).

    ADS  Article  Google Scholar 

  35. 35.

    Sharma, S., Dewhurst, J. K., Sanna, A. & Gross, E. K. U. Bootstrap approximation for the exchange-correlation kernel of time-dependent density-functional theory. Phys. Rev. Lett. 107, 186401 (2011).

    ADS  CAS  Article  Google Scholar 

  36. 36.

    Dewhurst, K. et al. The Elk FP-LAPW code. http://elk.sourceforge.net/ (2018).

  37. 37.

    Fuggle, J. C. & Mårtensson, N. Core-level binding energies in metals. J. Electron. Spectrosc. 3, 275–281 (1980).

    Article  Google Scholar 

  38. 38.

    Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At. Data Nucl. Data Tables 54, 181–342 (1993).

    ADS  CAS  Article  Google Scholar 

  39. 39.

    Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge infrastructural support by F. Krausz. This work was supported by the Max Planck Society, the Deutsche Forschungsgemeinschaft Cluster of Excellence: Munich Centre for Advanced Photonics (http://www.munich-photonics.de), the Deutsche Forschungsgemeinschaft CRC/Transregio 227 (Project A04) and the US Air Force Office of Scientific Research under award number FA9550-16-1-0073.

Reviewer information

Nature thanks Marie Barthelemy, Ilias Perakis and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

M.S., S.S. and M.M. designed and initiated the study. Experiments were performed by F.S., J.A.G., M.O., M.C.S., Y.-P.C. and M.S. Sample design and preparation were carried out by C.D., U.M., J.W. and M.M. Theoretical investigations were conducted by S.S. and J.K.D. Design and manufacturing of XUV optics were carried out by A.G., Y.C., M.S. and U.K. The manuscript was written by M.M., M.S. and S.S.; all authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Martin Schultze.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Hysteresis of the longitudinal magneto-optical Kerr effect for nickel and Ni/Pt multilayers.

The Kerr rotation angle, θk, is shown as a function of the applied external magnetic field, µ0H (µ0, magnetic constant). Both samples (blue, Ni; red, Ni/Pt multilayer) exhibit soft magnetic hysteresis and low saturation fields, which are needed to orient the macroscopic magnetization in the sample plane.

Extended Data Fig. 2 Fidelity of attosecond MCD.

Results are shown for an integration time of 300 s (green dots, individual data points; green line, moving average from 7 data points) and 20 s (red dots, individual data points; red line, moving average from 7 data points).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Siegrist, F., Gessner, J.A., Ossiander, M. et al. Light-wave dynamic control of magnetism. Nature 571, 240–244 (2019). https://doi.org/10.1038/s41586-019-1333-x

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing