Extended Data Fig. 4: Comparison between experimental data and numerical simulations including λI and λR. | Nature

Extended Data Fig. 4: Comparison between experimental data and numerical simulations including λI and λR.

From: Spin–orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect

Extended Data Fig. 4

a, Measured CP of device A1 as a function of n and D. b–d, Simulated CP from a low-energy continuum model with SOC as follows: b, a one-sided Ising SOC of λI = 1.7 meV; c, a one-sided Rashba SOC of λR = 15 meV; and d, a one-sided Ising SOC of λI = 1.7 meV and a Rashba SOC of λR = 15 meV. e, Linecut taken at the location of the dashed white line (D = 0.1 V nm−1) in a. The symbols mark dips in CP indicated with the same symbols in a. f, Linecut of the simulated data in b taken at u = −11.8 meV, equivalent to a displacement field of 0.1 V nm−1 for device A1. The symbols mark dips in CP indicated with the same symbols in b. g, Linecut of the calculated density of states (DOS) in h for device A1 taken at u = −11.8 meV, equivalent to a displacement field of 0.1 V nm−1 for device A1. The symbols mark peaks in DOS which correspond to dips in CP indicated with the same symbols in a, b, e, f and g. h, Calculated DOS for device A1. i, Low-energy bands (specifically bands 3–6) near the K point of the Brillouin zone with ky = 0, u = −10 meV and λI = 1.7 meV. A clear band splitting is observed in the conduction band associated with the addition of an Ising SOC. jl, Fermi contours at E = −10 meV and u = −10 meV (j), E = 5 meV and u = −10 meV (k), and E = 6 meV and u = −10 meV (l). m, Low-energy bands near the K point of the Brillouin zone with ky = 0, u = −10 meV and λR = 15 meV. n–p, Fermi contours at E = −10 meV and u = −10 meV (n), E = 5 meV and u = −10 meV (o) and E = 6 meV and u = −10 meV (p).

Back to article page