Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

To catch and reverse a quantum jump mid-flight

Abstract

In quantum physics, measurements can fundamentally yield discrete and random results. Emblematic of this feature is Bohr’s 1913 proposal of quantum jumps between two discrete energy levels of an atom1. Experimentally, quantum jumps were first observed in an atomic ion driven by a weak deterministic force while under strong continuous energy measurement2,3,4. The times at which the discontinuous jump transitions occur are reputed to be fundamentally unpredictable. Despite the non-deterministic character of quantum physics, is it possible to know if a quantum jump is about to occur? Here we answer this question affirmatively: we experimentally demonstrate that the jump from the ground state to an excited state of a superconducting artificial three-level atom can be tracked as it follows a predictable ‘flight’, by monitoring the population of an auxiliary energy level coupled to the ground state. The experimental results demonstrate that the evolution of each completed jump is continuous, coherent and deterministic. We exploit these features, using real-time monitoring and feedback, to catch and reverse quantum jumps mid-flight—thus deterministically preventing their completion. Our findings, which agree with theoretical predictions essentially without adjustable parameters, support the modern quantum trajectory theory5,6,7,8,9 and should provide new ground for the exploration of real-time intervention techniques in the control of quantum systems, such as the early detection of error syndromes in quantum error correction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Principle of the experiment.
Fig. 2: Unconditioned monitoring of quantum jumps in the three-level system.
Fig. 3: Catching the quantum jump mid-flight.
Fig. 4: Reversing the quantum jump mid-flight.

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. 1.

    Bohr, N. On the constitution of atoms and molecules. Part I. Binding of electrons by positive nuclei. Phil. Mag. 26, 1–25 (1913).

    CAS  MATH  Google Scholar 

  2. 2.

    Nagourney, W., Sandberg, J. & Dehmelt, H. Shelved optical electron amplifier: observation of quantum jumps. Phys. Rev. Lett. 56, 2797–2799 (1986).

    CAS  ADS  Article  Google Scholar 

  3. 3.

    Sauter, T., Neuhauser, W., Blatt, R. & Toschek, P. E. Observation of quantum jumps. Phys. Rev. Lett. 57, 1696 (1986).

    CAS  ADS  Article  Google Scholar 

  4. 4.

    Bergquist, J. C., Hulet, R. G., Itano, W. M. & Wineland, D. J. Observation of quantum jumps in a single atom. Phys. Rev. Lett. 57, 1699–1702 (1986).

    CAS  ADS  Article  Google Scholar 

  5. 5.

    Carmichael, H. J. An Open Systems Approach to Quantum Optics (Springer, 1993).

  6. 6.

    Gardiner, C. W., Parkins, A. S. & Zoller, P. Wave-function quantum stochastic differential equations and quantum-jump simulation methods. Phys. Rev. A 46, 4363–4381 (1992).

    CAS  ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Dalibard, J., Castin, Y. & Mølmer, K. Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 68, 580–583 (1992).

    CAS  ADS  Article  Google Scholar 

  8. 8.

    Plenio, M. B. & Knight, P. L. The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys. 70, 101–144 (1998).

    CAS  ADS  Article  Google Scholar 

  9. 9.

    Korotkov, A. N. Continuous quantum measurement of a double dot. Phys. Rev. B 60, 5737–5742 (1999).

    CAS  ADS  Article  Google Scholar 

  10. 10.

    Einstein, A. Strahlungs-emission und -absorption nach der Quantentheorie. Verh. Deutsch. Phys. Ges. 18, 318–323 (1916).

    CAS  Google Scholar 

  11. 11.

    Einstein, A. Quantentheorie der Strahlung. Phys. Z. 18, 121–128 (1917).

    CAS  Google Scholar 

  12. 12.

    Schrödinger, E. Are there quantum jumps? Br. J. Phil. Sci. 3, 109–123; 233–242 (1952).

    Article  Google Scholar 

  13. 13.

    Basché, T., Kummer, S. & Brauchle, C. Direct spectroscopic observation of quantum jumps of a single molecule. Nature 373, 132–134 (1995).

    ADS  Article  Google Scholar 

  14. 14.

    Peil, S. & Gabrielse, G. Observing the quantum limit of an electron cyclotron: QND measurements of quantum jumps between Fock states. Phys. Rev. Lett. 83, 1287–1290 (1999).

    CAS  ADS  Article  Google Scholar 

  15. 15.

    Gleyzes, S. S. et al. Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297–300 (2007).

    CAS  ADS  Article  Google Scholar 

  16. 16.

    Guerlin, C. et al. Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889–893 (2007).

    CAS  ADS  Article  Google Scholar 

  17. 17.

    Jelezko, F. et al. Single spin states in a defect center resolved by optical spectroscopy. Appl. Phys. Lett. 81, 2160 (2002).

    CAS  ADS  Article  Google Scholar 

  18. 18.

    Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

    CAS  ADS  Article  Google Scholar 

  19. 19.

    Robledo, L. et al. High fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

    CAS  ADS  Article  Google Scholar 

  20. 20.

    Vijay, R., Slichter, D. H. & Siddiqi, I. Observation of quantum jumps in a superconducting artificial atom. Phys. Rev. Lett. 106, 110502 (2011).

    CAS  ADS  Article  Google Scholar 

  21. 21.

    Hatridge, M. et al. Quantum back-action of an individual variable-strength measurement. Science 339, 178–181 (2013).

    CAS  ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Deléglise, S. et al. Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 510–514 (2008).

    ADS  Article  Google Scholar 

  23. 23.

    Sayrin, C. et al. Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73–77 (2011).

    CAS  ADS  Article  Google Scholar 

  24. 24.

    Sun, L. et al. Tracking photon jumps with repeated quantum non-demolition parity measurements. Nature 511, 444–448 (2014).

    CAS  ADS  Article  Google Scholar 

  25. 25.

    Ofek, N. et al. Demonstrating quantum error correction that extends the lifetime of quantum information. Nature 536, 441–445 (2016).

    CAS  ADS  Article  Google Scholar 

  26. 26.

    Porrati, M. & Putterman, S. Wave-function collapse due to null measurements: the origin of intermittent atomic fluorescence. Phys. Rev. A 36, 929–932 (1987).

    CAS  ADS  Article  Google Scholar 

  27. 27.

    Mabuchi, H. & Zoller, P. Inversion of quantum jumps in quantum optical systems under continuous observation. Phys. Rev. Lett. 76, 3108–3111 (1996).

    CAS  ADS  Article  Google Scholar 

  28. 28.

    Ruskov, R., Mizel, A. & Korotkov, A. N. Crossover of phase qubit dynamics in the presence of a negative-result weak measurement. Phys. Rev. B 75, 220501 (2007).

    ADS  Article  Google Scholar 

  29. 29.

    Volz, J., Gehr, R., Dubois, G., Esteve, J. & Reichel, J. Measurement of the internal state of a single atom without energy exchange. Nature 475, 210–213 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    Ristè, D. et al. Deterministic entanglement of superconducting qubits by parity measurement and feedback. Nature 502, 350–354 (2013).

    ADS  Article  Google Scholar 

  31. 31.

    Murch, K. W., Weber, S. J., Beck, K. M., Ginossar, E. & Siddiqi, I. Reduction of the radiative decay of atomic coherence in squeezed vacuum. Nature 499, 62–65 (2013).

    CAS  ADS  Article  Google Scholar 

  32. 32.

    Weber, S. J. et al. Mapping the optimal route between two quantum states. Nature 511, 570–573 (2014).

    CAS  ADS  Article  Google Scholar 

  33. 33.

    Katz, N. et al. Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312, 1498–1500 (2006).

    CAS  ADS  Article  Google Scholar 

  34. 34.

    Cook, R. J. What are quantum jumps? Phys. Scr. 1988, 49 (1988).

    Article  Google Scholar 

  35. 35.

    Bergeal, N. et al. Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465, 64–68 (2010).

    CAS  ADS  Article  Google Scholar 

  36. 36.

    Minev, Z. et al. Planar multilayer circuit quantum electrodynamics. Phys. Rev. Appl. 5, 044021 (2016).

    ADS  Article  Google Scholar 

  37. 37.

    Lecocq, F. et al. Junction fabrication by shadow evaporation without a suspended bridge. Nanotechnology 22, 315302 (2011).

    Article  Google Scholar 

  38. 38.

    Rigetti, C. T. Quantum Gates for Superconducting Qubits. PhD thesis, Yale Univ. (2009).

  39. 39.

    Minev, Z. K. Catching and Reversing a Quantum Jump Mid-Flight. PhD thesis, Yale Univ. (2019).

  40. 40.

    Chow, J. M. et al. Optimized driving of superconducting artificial atoms for improved single-qubit gates. Phys. Rev. A 82, 040305 (2010).

    ADS  Article  Google Scholar 

  41. 41.

    Reed, M. D. Entanglement and Quantum Error Correction with Superconducting Qubits. PhD thesis, Yale Univ. (2013).

  42. 42.

    Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011).

    CAS  Article  Google Scholar 

  43. 43.

    Eichler, C. et al. Observation of entanglement between itinerant microwave photons and a superconducting qubit. Phys. Rev. Lett. 109, 240501 (2012).

    CAS  ADS  Article  Google Scholar 

  44. 44.

    Liu, Y. Quantum Feedback Control of Multiple Superconducting Qubits. PhD thesis, Yale Univ. (2016).

  45. 45.

    Ristè, D., Bultink, C. C., Lehnert, K. W. & DiCarlo, L. Feedback control of a solid-state qubit using high-fidelity projective measurement. Phys. Rev. Lett. 109, 240502 (2012).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Z.K.M. and M.H.D. acknowledge discussion with V. V. Albert, R. Blatt, S. M. Girvin, S. Korotkov, K. Mølmer, N. Ofek, W. D. Phillips, M. P. Silveri and H. M. Wiseman. V. V. Albert addressed one aspect of the Lindblad theoretical modelling regarding the waiting time. Use of facilities was supported by the Yale Institute for Nanoscience and Quantum Engineering (YINQE), the Yale SEAS cleanroom and the US National Science Foundation MRSEC DMR 1119826. This research was supported by Army Research Office under grant number W911NF-14-1-0011. R.G.-J. and H.J.C. acknowledge the support of the Marsden Fund Council from government funding, administered by the Royal Society of New Zealand under contract number UOA1328.

Author information

Affiliations

Authors

Contributions

Z.K.M. initiated, designed and performed the experiment, designed the sample, analysed the data and carried out the initial theoretical and numerical modelling of the experiment. Z.K.M. conceived the experiment based on theoretical predictions by H.J.C. H.J.C. and R.G.-J. performed the presented theoretical modelling and numerical simulations. S.O.M. contributed to the experimental set-up and design of the device. S.O.M. and S.S. contributed to the fabrication of the device. P.R. and R.J.S. assisted with the FPGA. M.M. contributed theoretical support. M.H.D. supervised the project. Z.K.M. and M.H.D. wrote the manuscript. H.J.C. contributed the theoretical supplement. All authors provided suggestions for the experiment, discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Z. K. Minev or M. H. Devoret.

Ethics declarations

Competing interests

R.J.S. and M.H.D. are founders, and R.J.S. is an equity shareholder, of Quantum Circuits, Inc.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Waiting time to switch from a |B〉 to not-|B〉 state assignment result.

Semi-log plot of the histogram (shaded green) of the duration of times corresponding to |B〉-measurement results, τB, for 3.2 s of continuous data of the type shown in Fig. 2a. Solid line is an exponential fit which yields a 4.2 ± 0.03 μs time constant.

Extended Data Fig. 2 Mid-flight tomogram.

a, b, The plots show the real (a) and imaginary (b) parts of the conditional density matrix, ρc, at the mid-flight of the quantum jump (Δtcatch = Δtmid), in the presence of the Rabi drive from |G〉 to |D〉 (Δtoff = 0). The population of the |B〉 state is 0.023, and the magnitude of all imaginary components is less than 0.007.

Extended Data Fig. 3 Reversing the quantum jump mid-flight in the absence of ΩDG.

Success probabilities PG (purple) and PD (orange) to reverse to |G〉 and complete to |D〉 the quantum jump mid-flight at \({\rm{\Delta }}{t}_{{\rm{catch}}}={\rm{\Delta }}{t}_{{\rm{mid}}}^{^{\prime} }\), defined in Fig. 3b, in the absence of the Rabi drive ΩDG, where Δton = 2 μs and θI = π/2. The error bars are smaller than the size of the dots. In the presence of ΩDGPG is 5% larger owing to a smaller T2 effect. Black dots denote the success probability for |G〉 (closed dots) and |D〉 (open dots) for the control experiment in which the intervention is applied at random times (see Fig. 4b).

Extended Data Fig. 4 Control flow of the experiment.

a, Flowchart illustrating the control flow of the catch and reverse experiments, whose results are shown in Figs. 3, 4. See Methods for the description of each block. b, Flowchart of the master and demodulator modules chiefly involved in the ‘monitor and catch Δton’ routine. The modules execute concurrently and share data synchronously, as discussed in Methods. c, Flowchart of the processing involved in the master module of the ‘monitor and catch Δtoff’ routine; see Methods.

Extended Data Table 1 Input–output table summarizing the behaviour of the IQ filter implemented on the FPGA controller
Extended Data Table 2 Summary of timescales

Supplementary information

Supplementary Information

The file, which contains 5 figures and 3 tables, describes the theoretical modeling of the experiment, explicates the theoretical calculations involved in the analysis of the trajectory jump dynamics, and presents further control experiments and details on the results.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Minev, Z., Mundhada, S., Shankar, S. et al. To catch and reverse a quantum jump mid-flight. Nature 570, 200–204 (2019). https://doi.org/10.1038/s41586-019-1287-z

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing