Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hypersonic Bose–Einstein condensates in accelerator rings

Abstract

Some of the most sensitive and precise measurements—for example, of inertia1, gravity2 and rotation3—are based on matter-wave interferometry with free-falling atomic clouds. To achieve very high sensitivities, the interrogation time has to be very long, and consequently the experimental apparatus needs to be very tall (in some cases reaching ten or even one hundred metres) or the experiments must be performed in microgravity in space4,5,6,7. Cancelling gravitational acceleration (for example, in atomtronic circuits8,9 and matter-wave guides10) is expected to result in compact devices with extended interrogation times and therefore increased sensitivity. Here we demonstrate smooth and controllable matter-wave guides by transporting Bose–Einstein condensates (BECs) over macroscopic distances. We use a neutral-atom accelerator ring to bring BECs to very high speeds (16 times their sound velocity) and transport them in a magnetic matter-wave guide for 15 centimetres while fully preserving their internal coherence. The resulting high angular momentum of more than 40,000ħ per atom (where ħ is the reduced Planck constant) gives access to the higher Landau levels of quantum Hall states, and the hypersonic velocities achieved, combined with our ability to control potentials with picokelvin precision, will facilitate the study of superfluidity and give rise to tunnelling and a large range of transport regimes of ultracold atoms11,12,13. Coherent matter-wave guides are expected to enable interaction times of several seconds in highly compact devices and lead to portable guided-atom interferometers for applications such as inertial navigation and gravity mapping.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Absorption images of ultracold thermal clouds and BECs in ring-shaped matter-wave guides.
Fig. 2: Accelerating BECs.
Fig. 3: Long-distance transport in the accelerator ring.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Geiger, R. et al. Detecting inertial effects with airborne matter-wave interferometry. Nat. Commun. 2, 474 (2011).

    CAS  ADS  Article  Google Scholar 

  2. 2.

    Rosi, G., Sorrentino, F., Cacciapuoti, L., Prevedelli, M. & Tino, G. M. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518–521 (2014).

    CAS  ADS  Article  Google Scholar 

  3. 3.

    Dutta, I. et al. Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability. Phys. Rev. Lett. 116, 183003 (2016).

    CAS  ADS  Article  Google Scholar 

  4. 4.

    Kovachy, T. et al. Quantum superposition at the half-metre scale. Nature 528, 530–533 (2015).

    CAS  ADS  Article  Google Scholar 

  5. 5.

    van Zoest, T. et al. Bose–Einstein condensation in microgravity. Science 328, 1540–1543 (2010).

    ADS  Article  Google Scholar 

  6. 6.

    Barrett, B. et al. Dual matter-wave inertial sensors in weightlessness. Nat. Commun. 7, 13786 (2016).

    CAS  ADS  Article  Google Scholar 

  7. 7.

    Soriano, M. et al. Cold atom laboratory mission system design. In 2014 IEEE Aerospace Conference 1–11 (IEEE, 2014).

  8. 8.

    Amico, L., Birkl, G., Boshier, M. & Kwek, L.-C. Focus on atomtronics-enabled quantum technologies. New J. Phys. 19, 020201 (2017).

    ADS  Article  Google Scholar 

  9. 9.

    Dumke, R. et al. Roadmap on quantum optical systems. J. Opt. 18, 093001 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Wang, Y. J. et al. Atom Michelson interferometer on a chip using a Bose–Einstein condensate. Phys. Rev. Lett. 94, 090405 (2005).

    ADS  Article  Google Scholar 

  11. 11.

    Brantut, J.-P., Meineke, J., Stadler, D., Krinner, S. & Esslinger, T. Conduction of ultracold fermions through a mesoscopic channel. Science 337, 1069–1071 (2012).

    CAS  ADS  Article  Google Scholar 

  12. 12.

    Krinner, S., Esslinger, T. & Brantut, J.-P. Two-terminal transport measurements with cold atoms. J. Phys. Condens. Matter 29, 343003 (2017).

    Article  Google Scholar 

  13. 13.

    Krinner, S., Stadler, D., Husmann, D., Brantut, J.-P. & Esslinger, T. Observation of quantized conductance in neutral matter. Nature 517, 64–67 (2015).

    CAS  ADS  Article  Google Scholar 

  14. 14.

    Lenef, A. et al. Rotation sensing with an atom interferometer. Phys. Rev. Lett. 78, 760–763 (1997).

    CAS  ADS  Article  Google Scholar 

  15. 15.

    Lesanovsky, I. & von Klitzing, W. Spontaneous emergence of angular momentum josephson oscillations in coupled annular bose-einstein condensates. Phys. Rev. Lett. 98, 050401 (2007).

    CAS  ADS  Article  Google Scholar 

  16. 16.

    Eckel, S. et al. Hysteresis in a quantized superfluid ‘atomtronic’ circuit. Nature 506, 200–203 (2014).

    CAS  ADS  Article  Google Scholar 

  17. 17.

    Murch, K. W., Moore, K. L., Gupta, S. & Stamper-Kurn, D. M. Dispersion management using betatron resonances in an ultracold-atom storage ring. Phys. Rev. Lett. 96, 013202 (2006).

    CAS  ADS  Article  Google Scholar 

  18. 18.

    Navez, P. et al. Matter-wave interferometers using TAAP rings. New J. Phys. 18, 075014 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Henderson, K., Ryu, C., MacCormick, C. & Boshier, M. G. Experimental demonstration of painting arbitrary and dynamic potentials for Bose–Einstein condensates. New J. Phys. 11, 043030 (2009).

    ADS  Article  Google Scholar 

  20. 20.

    Ryu, C. et al. Observation of persistent flow of a Bose–Einstein condensate in a toroidal trap. Phys. Rev. Lett. 99, 260401 (2007).

    CAS  ADS  Article  Google Scholar 

  21. 21.

    Leanhardt, A. E. et al. Propagation of Bose–Einstein condensates in a magnetic waveguide. Phys. Rev. Lett. 89, 040401 (2002).

    CAS  ADS  Article  Google Scholar 

  22. 22.

    Trebbia, J.-B., Garrido Alzar, C. L., Cornelussen, R., Westbrook, C. I. & Bouchoule, I. Roughness suppression via rapid current modulation on an atom chip. Phys. Rev. Lett. 98, 263201 (2007).

    ADS  Article  Google Scholar 

  23. 23.

    Chen, X., Torrontegui, E., Stefanatos, D., Li, J.-S. & Muga, J. G. Optimal trajectories for efficient atomic transport without final excitation. Phys. Rev. A 84, 043415 (2011).

    ADS  Article  Google Scholar 

  24. 24.

    Guéry-Odelin, D. & Muga, J. G. Transport in a harmonic trap: shortcuts to adiabaticity and robust protocols. Phys. Rev. A 90, 063425 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    Jones, M. P. A. et al. Cold atoms probe the magnetic field near a wire. J. Phys. B 37, L15 (2004).

    CAS  Article  Google Scholar 

  26. 26.

    Folman, R. et al. Controlling cold atoms using nanofabricated surfaces: atom chips. Phys. Rev. Lett. 84, 4749–4752 (2000).

    CAS  ADS  Article  Google Scholar 

  27. 27.

    Lesanovsky, I. & von Klitzing, W. Time-averaged adiabatic potentials: versatile matter-wave guides and atom traps. Phys. Rev. Lett. 99, 083001 (2007).

    ADS  Article  Google Scholar 

  28. 28.

    Sherlock, B. E., Gildemeister, M., Owen, E., Nugent, E. & Foot, C. J. Time-averaged adiabatic ring potential for ultracold atoms. Phys. Rev. A 83, 043408 (2011).

    ADS  Article  Google Scholar 

  29. 29.

    Zobay, O. & Garraway, B. M. Two-dimensional atom trapping in field-induced adiabatic potentials. Phys. Rev. Lett. 86, 1195–1198 (2001).

    CAS  ADS  Article  Google Scholar 

  30. 30.

    Müller, J. H. et al. Atomic micromotion and geometric forces in a triaxial magnetic trap. Phys. Rev. Lett. 85, 4454–4457 (2000).

    ADS  Article  Google Scholar 

  31. 31.

    Kumar, A. et al. Minimally destructive, Doppler measurement of a quantized flow in a ring-shaped Bose–Einstein condensate. New J. Phys. 18, 025001 (2016).

    ADS  Article  Google Scholar 

  32. 32.

    Roncaglia, M., Rizzi, M. & Dalibard, J. From rotating atomic rings to quantum Hall states. Sci. Rep. 1, 43 (2011).

    CAS  ADS  Article  Google Scholar 

  33. 33.

    Lin, Y.-J., Perry, A. R., Compton, R. L., Spielman, I. B. & Porto, J. V. Rapid production of 87Rb Bose–Einstein condensates in a combined magnetic and optical potential. Phys. Rev. A 79, 063631 (2009).

    ADS  Article  Google Scholar 

  34. 34.

    Pappa, M. et al. Ultra-sensitive atom imaging for matter-wave optics. New J. Phys. 13, 115012 (2011).

    ADS  Article  Google Scholar 

  35. 35.

    Petrov, D. S., Shlyapnikov, G. V. & Walraven, J. T. M. Phase-fluctuating 3D Bose–Einstein condensates in elongated traps. Phys. Rev. Lett. 87, 050404 (2001).

    CAS  ADS  Article  Google Scholar 

  36. 36.

    Dettmer, S. et al. Observation of phase fluctuations in elongated Bose–Einstein condensates. Phys. Rev. Lett. 87, 160406 (2001).

    CAS  ADS  Article  Google Scholar 

  37. 37.

    Kavoulakis, G. M. & Pethick, C. J. Quasi-one-dimensional character of sound propagation in elongated Bose–Einstein condensed clouds. Phys. Rev. A 58, 1563–1566 (1998).

    CAS  ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the project HELLAS-CH (MIS 5002735), which is implemented under the Action for Strengthening Research and Innovation Infrastructures, funded by the Operational Programme 'Competitiveness, Entrepreneurship and Innovation' (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund). G.V. received funding from the European Commission’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement 750017. S.P. and G.D. acknowledge financial support from the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat and Technology (GSRT), under the HFRI PhD Fellowship grants 4823 and 4794.

Author information

Affiliations

Authors

Contributions

W.v.K. conceived the ideas for the experiments. S.P., H.M. and W.v.K. carried out the experiments, data analysis and theoretical work. S.P., H.M., K.P., V.B., G.D. and W.v.K. built the experiment. All authors contributed to the discussion of the results and writing of the manuscript.

Corresponding author

Correspondence to Wolf von Klitzing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pandey, S., Mas, H., Drougakis, G. et al. Hypersonic Bose–Einstein condensates in accelerator rings. Nature 570, 205–209 (2019). https://doi.org/10.1038/s41586-019-1273-5

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing