Letter | Published:

Atomic rheology of gold nanojunctions

Abstract

Despite extensive investigations of dissipation and deformation processes in micro- and nano-sized metallic samples1,2,3,4,5,6,7, the mechanisms at play during the deformation of systems with ultimate (molecular) size remain unknown. Although metallic nanojunctions, which are obtained by stretching metallic wires down to the atomic level, are typically used to explore atomic-scale contacts5,8,9,10,11, it has not been possible until now to determine the full equilibrium and non-equilibrium rheological flow properties of matter at such scales. Here, by using an atomic-force microscope equipped with a quartz tuning fork, we combine electrical and rheological measurements on ångström-size gold junctions to study the non-linear rheology of this model atomic system. By subjecting the junction to increasing subnanometric deformations we observe a transition from a purely elastic regime to a plastic one, and eventually to a viscous-like fluidized regime, similar to the rheology of soft yielding materials12,13,14, although orders of magnitude different in length scale. The fluidized state furthermore exhibits capillary attraction, as expected for liquid capillary bridges. This shear fluidization cannot be captured by classical models of friction between atomic planes15,16 and points to an unexpected dissipative behaviour of defect-free metallic junctions at ultimate scales. Atomic rheology is therefore a powerful tool that can be used to probe the structural reorganization of atomic contacts.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data shown in the plots and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Kraft, O., Gruber, P. A., Mönig, R. & Weygand, D. Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293–317 (2010).

  2. 2.

    Wu, B., Heidelberg, A. & Boland, J. J. Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525–529 (2005).

  3. 3.

    Yu, Q. et al. Strong crystal size effect on deformation twinning. Nature 463, 335–338 (2010).

  4. 4.

    Chen, C. Q., Shi, Y., Zhang, Y. S., Zhu, J. & Yan, Y. J. Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96, 075505 (2006).

  5. 5.

    Rubio, G., Agraït, N. & Vieira, S. Atomic-sized metallic contacts: mechanical properties and electronic transport. Phys. Rev. Lett. 76, 2302–2305 (1996).

  6. 6.

    Kuipers, L. & Frenken, J. W. M. Jump to contact, neck formation, and surface melting in the scanning tunneling microscope. Phys. Rev. Lett. 70, 3907–3910 (1993).

  7. 7.

    Sun, J. et al. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat. Mater. 13, 1007–1012 (2014).

  8. 8.

    Yanson, A. I., Rubio Bollinger, G., van den Brom, H. E., Agraït, N. & van Ruitenbeek, J. M. Formation and manipulation of a metallic wire of single gold atoms. Nature 395, 783–785 (1998).

  9. 9.

    Ohnishi, H., Kondo, Y. & Takayanagi, K. Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780–783 (1998).

  10. 10.

    Shiota, T., Mares, A. I., Valkering, A. M. C., Oosterkamp, T. H. & van Ruitenbeek, J. M. Mechanical properties of Pt monatomic chains. Phys. Rev. B 77, 125411 (2008).

  11. 11.

    Agraït, N., Yeyati, A. L. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003).

  12. 12.

    Mason, T. G., Bibette, J. & Weitz, D. A. Yielding and flow of monodisperse emulsions. J. Colloid Interface Sci. 179, 439–448 (1996).

  13. 13.

    Larson, R. G. The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999).

  14. 14.

    Bocquet, L., Colin, A. & Ajdari, A. A kinetic theory of plastic flow in soft glassy materials. Phys. Rev. Lett. 103, 036001 (2009).

  15. 15.

    Frenkel, J. Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper. Z. Phys. 37, 572–609 (1926).

  16. 16.

    Zaloj, V., Urbakh, M. & Klafter, J. Atomic scale friction: what can be deduced from the response to a harmonic drive? Phys. Rev. Lett. 81, 1227–1230 (1998).

  17. 17.

    Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007).

  18. 18.

    Güttinger, J. et al. Energy-dependent path of dissipation in nanomechanical resonators. Nat. Nanotechnol. 12, 631–636 (2017).

  19. 19.

    Persson, B. N. J., Albohr, O., Tartaglino, U., Volokitin, A. I. & Tosatti, E. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 17, R1–R62 (2005).

  20. 20.

    Marszalek, P. E., Greenleaf, W. J., Li, H., Oberhauser, A. F. & Fernandez, J. M. Atomic force microscopy captures quantized plastic deformation in gold nanowires. Proc. Natl Acad. Sci. USA 97, 6282–6286 (2000).

  21. 21.

    Espinosa, H. D., Prorok, B. C. & Peng, B. Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J. Mech. Phys. Solids 52, 667–689 (2004).

  22. 22.

    Lee, S. W., Han, S. M. & Nix, W. D. Uniaxial compression of fcc Au nanopillars on an MgO substrate: the effects of prestraining and annealing. Acta Mater. 57, 4404–4415 (2009).

  23. 23.

    Vermant, J., Moldenaers, P., Mewis, J., Ellis, M. & Garritano, R. Orthogonal superposition measurements using a rheometer equipped with a force rebalanced transducer. Rev. Sci. Instrum. 68, 4090–4096 (1997).

  24. 24.

    Tosatti, E., Prestipino, S., Kostlmeier, S., Dal Corso, A. & Di Tolla, F. D. String tension and stability of magic tip-suspended nanowires. Science 291, 288–290 (2001).

  25. 25.

    Kondo, Y. & Takayanagi, K. Synthesis and characterization of helical multi-shell gold nanowires. Science 289, 606–608 (2000).

  26. 26.

    Eisenmann, C., Kim, C., Mattsson, J. & Weitz, D. A. Shear melting of a colloidal glass. Phys. Rev. Lett. 104, 035502 (2010).

  27. 27.

    Dijksman, J. A., Wortel, G. H., van Dellen, L. T. H., Dauchot, O. & van Hecke, M. Jamming, yielding, and rheology of weakly vibrated granular media. Phys. Rev. Lett. 107, 108303 (2011).

  28. 28.

    Gosvami, N. N. et al. Ageing of a microscopic sliding gold contact at low temperatures. Phys. Rev. Lett. 107, 144303 (2011).

  29. 29.

    Merkle, A. P. & Marks, L. D. Liquid-like tribology of gold studied by in situ TEM. Wear 265, 1864–1869 (2008).

  30. 30.

    Crassous, J., Charlaix, E. & Loubet, J.-L. Nanoscale investigation of wetting dynamics with a surface force apparatus. Phys. Rev. Lett. 78, 2425–2428 (1997).

  31. 31.

    Kaufman, S. M. & Whalen, T. J. The surface tension of liquid gold, liquid tin, and liquid gold-tin binary solutions. Acta Metall. 13, 797–805 (1965).

  32. 32.

    Zepeda-Ruiz, L. A., Stukowski, A., Oppelstrup, T. & Bulatov, V. V. Probing the limits of metal plasticity with molecular dynamics simulations. Nature 550, 492–495 (2017).

  33. 33.

    Lu, Y., Huang, J. Y., Wang, C., Sun, S. & Lou, J. Cold welding of ultrathin gold nanowires. Nat. Nanotechnol. 5, 218–224 (2010).

  34. 34.

    Comtet, J. et al. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening. Nature Mater. 16, 634–639 (2017).

  35. 35.

    Comtet, J. et al. Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions. Nat. Commun. 8, 15633 (2017).

  36. 36.

    Zaloj, V., Urbakh, M. & Klafter, J. Deducing energy dissipation from rheological response. J. Chem. Phys. 110, 1263–1266 (1999).

  37. 37.

    Kittel, C. Introduction to Solid State Physics 7th edn, Vol. 8 (Wiley, New York, 1996).

  38. 38.

    Bylinskii, A., Gangloff, D. & Vuletić, V. Tuning friction atom-by-atom in an ion-crystal simulator. Science 348, 1115–1118 (2015).

Download references

Acknowledgements

A.S. acknowledges funding from the European Union’s H2020 Framework Programme/ERC Starting Grant agreement number 637748 – NanoSOFT. L.B. acknowledges funding from the European Union’s H2020 Framework Programme/ERC Advanced Grant – Shadoks.

Reviewer information

Nature thanks Erio Tosatti and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

A.N., L.B. and A.S. conceived and supervised the project. A.S. and A.N. designed the experiments. J.C. developed the experimental setup. J.C. and A.L. performed the experiments. J.C. wrote the manuscript with input from all the authors.

Competing interests

The authors declare no competing interests.

Correspondence to Alessandro Siria.

Extended data figures and tables

Extended Data Fig. 1 Raw data.

a, b, Raw data showing the frequency shift δf = δω/2π (a) and the excitation voltage E (b) far from the substrate (red curves) and during a typical rheological experiment on a metallic gold contact (N = 11) (blue).

Extended Data Fig. 2 Effect of excitation frequency on the plastic transition.

Mechanical impedance Z′ and Z″ of the gold junction as a function of oscillation amplitude as of the substrate with fs = 200 kHz. Entry in the plastic regime occurs at the critical substrate oscillation amplitude \({a}_{{\rm{s}}}^{{\rm{c}}}\). Cross-sectional atom number is = 15.

Extended Data Fig. 3 Force spectroscopy at large oscillation amplitude.

a, b, Force spectroscopy showing the approach (black) and retraction (blue) of the gold tip to the gold substrate at large oscillation amplitude (1 nm) for the conservative mechanical impedance Z′ (a) and the dimensionless conductance G/G0 (b).

Extended Data Fig. 4 Energy balance for the shear-induced fluidization of the junction.

Dissipated energy in the junction over one oscillation cycle as a function of melted volume (see Methods for details). The dashed line has a slope of 1.

Extended Data Fig. 5 Typical rheological curves.

Typical rheological curves for various contact conductances, showing the conservative modulus Z′ (black), the dissipative modulus Z″ (red) and the mean current (blue). The general trends of the rheological curves are maintained, with: (1) a plastic transition at a critical oscillation amplitude aY, corresponding to a decrease in Z′, an increase in Z″ and an increase in current fluctuations; (2) a plateau in the dissipative impedance at large oscillation amplitude; and (3) a decrease in the conservative impedance to negative values Z′ < 0, corresponding to a capillary-like attraction at a critical oscillation amplitude aL.

Extended Data Fig. 6 Reversibility of the plastic transition.

Rheological curve obtained for increasing (dots) and decreasing (cross) oscillation amplitude (here for N = 20). The plastic transition is found to be completely reversible, with negligible hysteresis.

Extended Data Fig. 7 Prandtl–Tomlinson model.

a, b, Schematic of the model, with a mass-spring oscillator of mass M and stiffness K (a) interacting with a corrugated potential of N potential wells of corrugation energy U0 and corrugation period b (b). c, Simulation results, showing the dimensionless dissipative and conservative impedance \(\widetilde{Z}=Z/\left(N{U}_{0}/b\right)\) as a function of dimensionless oscillation amplitude x/b. Inset, dimensionless dissipative force, FD/(NU0/b).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Experimental setup.
Fig. 2: Atomic rheology.
Fig. 3: Yielding threshold.
Fig. 4: Liquid-like behaviour.
Extended Data Fig. 1: Raw data.
Extended Data Fig. 2: Effect of excitation frequency on the plastic transition.
Extended Data Fig. 3: Force spectroscopy at large oscillation amplitude.
Extended Data Fig. 4: Energy balance for the shear-induced fluidization of the junction.
Extended Data Fig. 5: Typical rheological curves.
Extended Data Fig. 6: Reversibility of the plastic transition.
Extended Data Fig. 7: Prandtl–Tomlinson model.

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.