Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomic rheology of gold nanojunctions


Despite extensive investigations of dissipation and deformation processes in micro- and nano-sized metallic samples1,2,3,4,5,6,7, the mechanisms at play during the deformation of systems with ultimate (molecular) size remain unknown. Although metallic nanojunctions, which are obtained by stretching metallic wires down to the atomic level, are typically used to explore atomic-scale contacts5,8,9,10,11, it has not been possible until now to determine the full equilibrium and non-equilibrium rheological flow properties of matter at such scales. Here, by using an atomic-force microscope equipped with a quartz tuning fork, we combine electrical and rheological measurements on ångström-size gold junctions to study the non-linear rheology of this model atomic system. By subjecting the junction to increasing subnanometric deformations we observe a transition from a purely elastic regime to a plastic one, and eventually to a viscous-like fluidized regime, similar to the rheology of soft yielding materials12,13,14, although orders of magnitude different in length scale. The fluidized state furthermore exhibits capillary attraction, as expected for liquid capillary bridges. This shear fluidization cannot be captured by classical models of friction between atomic planes15,16 and points to an unexpected dissipative behaviour of defect-free metallic junctions at ultimate scales. Atomic rheology is therefore a powerful tool that can be used to probe the structural reorganization of atomic contacts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental setup.
Fig. 2: Atomic rheology.
Fig. 3: Yielding threshold.
Fig. 4: Liquid-like behaviour.

Similar content being viewed by others

Data availability

The data shown in the plots and other findings of this study are available from the corresponding author upon reasonable request.


  1. Kraft, O., Gruber, P. A., Mönig, R. & Weygand, D. Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293–317 (2010).

    Article  ADS  CAS  Google Scholar 

  2. Wu, B., Heidelberg, A. & Boland, J. J. Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525–529 (2005).

    Article  ADS  CAS  Google Scholar 

  3. Yu, Q. et al. Strong crystal size effect on deformation twinning. Nature 463, 335–338 (2010).

    Article  ADS  CAS  Google Scholar 

  4. Chen, C. Q., Shi, Y., Zhang, Y. S., Zhu, J. & Yan, Y. J. Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96, 075505 (2006).

    Article  ADS  CAS  Google Scholar 

  5. Rubio, G., Agraït, N. & Vieira, S. Atomic-sized metallic contacts: mechanical properties and electronic transport. Phys. Rev. Lett. 76, 2302–2305 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Kuipers, L. & Frenken, J. W. M. Jump to contact, neck formation, and surface melting in the scanning tunneling microscope. Phys. Rev. Lett. 70, 3907–3910 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Sun, J. et al. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat. Mater. 13, 1007–1012 (2014).

    Article  ADS  CAS  Google Scholar 

  8. Yanson, A. I., Rubio Bollinger, G., van den Brom, H. E., Agraït, N. & van Ruitenbeek, J. M. Formation and manipulation of a metallic wire of single gold atoms. Nature 395, 783–785 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Ohnishi, H., Kondo, Y. & Takayanagi, K. Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780–783 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Shiota, T., Mares, A. I., Valkering, A. M. C., Oosterkamp, T. H. & van Ruitenbeek, J. M. Mechanical properties of Pt monatomic chains. Phys. Rev. B 77, 125411 (2008).

    Article  ADS  Google Scholar 

  11. Agraït, N., Yeyati, A. L. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003).

    Article  ADS  Google Scholar 

  12. Mason, T. G., Bibette, J. & Weitz, D. A. Yielding and flow of monodisperse emulsions. J. Colloid Interface Sci. 179, 439–448 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Larson, R. G. The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999).

    Google Scholar 

  14. Bocquet, L., Colin, A. & Ajdari, A. A kinetic theory of plastic flow in soft glassy materials. Phys. Rev. Lett. 103, 036001 (2009).

    Article  ADS  Google Scholar 

  15. Frenkel, J. Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper. Z. Phys. 37, 572–609 (1926).

    Article  ADS  Google Scholar 

  16. Zaloj, V., Urbakh, M. & Klafter, J. Atomic scale friction: what can be deduced from the response to a harmonic drive? Phys. Rev. Lett. 81, 1227–1230 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007).

    Article  ADS  CAS  Google Scholar 

  18. Güttinger, J. et al. Energy-dependent path of dissipation in nanomechanical resonators. Nat. Nanotechnol. 12, 631–636 (2017).

    Article  ADS  Google Scholar 

  19. Persson, B. N. J., Albohr, O., Tartaglino, U., Volokitin, A. I. & Tosatti, E. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 17, R1–R62 (2005).

    Article  ADS  CAS  Google Scholar 

  20. Marszalek, P. E., Greenleaf, W. J., Li, H., Oberhauser, A. F. & Fernandez, J. M. Atomic force microscopy captures quantized plastic deformation in gold nanowires. Proc. Natl Acad. Sci. USA 97, 6282–6286 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Espinosa, H. D., Prorok, B. C. & Peng, B. Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J. Mech. Phys. Solids 52, 667–689 (2004).

    Article  ADS  CAS  Google Scholar 

  22. Lee, S. W., Han, S. M. & Nix, W. D. Uniaxial compression of fcc Au nanopillars on an MgO substrate: the effects of prestraining and annealing. Acta Mater. 57, 4404–4415 (2009).

    Article  CAS  Google Scholar 

  23. Vermant, J., Moldenaers, P., Mewis, J., Ellis, M. & Garritano, R. Orthogonal superposition measurements using a rheometer equipped with a force rebalanced transducer. Rev. Sci. Instrum. 68, 4090–4096 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Tosatti, E., Prestipino, S., Kostlmeier, S., Dal Corso, A. & Di Tolla, F. D. String tension and stability of magic tip-suspended nanowires. Science 291, 288–290 (2001).

    Article  ADS  CAS  Google Scholar 

  25. Kondo, Y. & Takayanagi, K. Synthesis and characterization of helical multi-shell gold nanowires. Science 289, 606–608 (2000).

    Article  ADS  CAS  Google Scholar 

  26. Eisenmann, C., Kim, C., Mattsson, J. & Weitz, D. A. Shear melting of a colloidal glass. Phys. Rev. Lett. 104, 035502 (2010).

    Article  ADS  Google Scholar 

  27. Dijksman, J. A., Wortel, G. H., van Dellen, L. T. H., Dauchot, O. & van Hecke, M. Jamming, yielding, and rheology of weakly vibrated granular media. Phys. Rev. Lett. 107, 108303 (2011).

    Article  ADS  Google Scholar 

  28. Gosvami, N. N. et al. Ageing of a microscopic sliding gold contact at low temperatures. Phys. Rev. Lett. 107, 144303 (2011).

    Article  ADS  Google Scholar 

  29. Merkle, A. P. & Marks, L. D. Liquid-like tribology of gold studied by in situ TEM. Wear 265, 1864–1869 (2008).

    Article  CAS  Google Scholar 

  30. Crassous, J., Charlaix, E. & Loubet, J.-L. Nanoscale investigation of wetting dynamics with a surface force apparatus. Phys. Rev. Lett. 78, 2425–2428 (1997).

    Article  ADS  CAS  Google Scholar 

  31. Kaufman, S. M. & Whalen, T. J. The surface tension of liquid gold, liquid tin, and liquid gold-tin binary solutions. Acta Metall. 13, 797–805 (1965).

    Article  CAS  Google Scholar 

  32. Zepeda-Ruiz, L. A., Stukowski, A., Oppelstrup, T. & Bulatov, V. V. Probing the limits of metal plasticity with molecular dynamics simulations. Nature 550, 492–495 (2017).

    Article  ADS  CAS  Google Scholar 

  33. Lu, Y., Huang, J. Y., Wang, C., Sun, S. & Lou, J. Cold welding of ultrathin gold nanowires. Nat. Nanotechnol. 5, 218–224 (2010).

    Article  ADS  CAS  Google Scholar 

  34. Comtet, J. et al. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening. Nature Mater. 16, 634–639 (2017).

    Article  ADS  CAS  Google Scholar 

  35. Comtet, J. et al. Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions. Nat. Commun. 8, 15633 (2017).

    Article  ADS  CAS  Google Scholar 

  36. Zaloj, V., Urbakh, M. & Klafter, J. Deducing energy dissipation from rheological response. J. Chem. Phys. 110, 1263–1266 (1999).

    Article  ADS  CAS  Google Scholar 

  37. Kittel, C. Introduction to Solid State Physics 7th edn, Vol. 8 (Wiley, New York, 1996).

    MATH  Google Scholar 

  38. Bylinskii, A., Gangloff, D. & Vuletić, V. Tuning friction atom-by-atom in an ion-crystal simulator. Science 348, 1115–1118 (2015).

    Article  ADS  CAS  Google Scholar 

Download references


A.S. acknowledges funding from the European Union’s H2020 Framework Programme/ERC Starting Grant agreement number 637748 – NanoSOFT. L.B. acknowledges funding from the European Union’s H2020 Framework Programme/ERC Advanced Grant – Shadoks.

Reviewer information

Nature thanks Erio Tosatti and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations



A.N., L.B. and A.S. conceived and supervised the project. A.S. and A.N. designed the experiments. J.C. developed the experimental setup. J.C. and A.L. performed the experiments. J.C. wrote the manuscript with input from all the authors.

Corresponding author

Correspondence to Alessandro Siria.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Raw data.

a, b, Raw data showing the frequency shift δf = δω/2π (a) and the excitation voltage E (b) far from the substrate (red curves) and during a typical rheological experiment on a metallic gold contact (N = 11) (blue).

Extended Data Fig. 2 Effect of excitation frequency on the plastic transition.

Mechanical impedance Z′ and Z″ of the gold junction as a function of oscillation amplitude as of the substrate with fs = 200 kHz. Entry in the plastic regime occurs at the critical substrate oscillation amplitude \({a}_{{\rm{s}}}^{{\rm{c}}}\). Cross-sectional atom number is = 15.

Extended Data Fig. 3 Force spectroscopy at large oscillation amplitude.

a, b, Force spectroscopy showing the approach (black) and retraction (blue) of the gold tip to the gold substrate at large oscillation amplitude (1 nm) for the conservative mechanical impedance Z′ (a) and the dimensionless conductance G/G0 (b).

Extended Data Fig. 4 Energy balance for the shear-induced fluidization of the junction.

Dissipated energy in the junction over one oscillation cycle as a function of melted volume (see Methods for details). The dashed line has a slope of 1.

Extended Data Fig. 5 Typical rheological curves.

Typical rheological curves for various contact conductances, showing the conservative modulus Z′ (black), the dissipative modulus Z″ (red) and the mean current (blue). The general trends of the rheological curves are maintained, with: (1) a plastic transition at a critical oscillation amplitude aY, corresponding to a decrease in Z′, an increase in Z″ and an increase in current fluctuations; (2) a plateau in the dissipative impedance at large oscillation amplitude; and (3) a decrease in the conservative impedance to negative values Z′ < 0, corresponding to a capillary-like attraction at a critical oscillation amplitude aL.

Extended Data Fig. 6 Reversibility of the plastic transition.

Rheological curve obtained for increasing (dots) and decreasing (cross) oscillation amplitude (here for N = 20). The plastic transition is found to be completely reversible, with negligible hysteresis.

Extended Data Fig. 7 Prandtl–Tomlinson model.

a, b, Schematic of the model, with a mass-spring oscillator of mass M and stiffness K (a) interacting with a corrugated potential of N potential wells of corrugation energy U0 and corrugation period b (b). c, Simulation results, showing the dimensionless dissipative and conservative impedance \(\widetilde{Z}=Z/\left(N{U}_{0}/b\right)\) as a function of dimensionless oscillation amplitude x/b. Inset, dimensionless dissipative force, FD/(NU0/b).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comtet, J., Lainé, A., Niguès, A. et al. Atomic rheology of gold nanojunctions. Nature 569, 393–397 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing