Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A rapidly changing jet orientation in the stellar-mass black-hole system V404 Cygni

Abstract

Powerful relativistic jets are one of the main ways in which accreting black holes provide kinetic feedback to their surroundings. Jets launched from or redirected by the accretion flow that powers them are expected to be affected by the dynamics of the flow, which for accreting stellar-mass black holes has shown evidence for precession1 due to frame-dragging effects that occur when the black-hole spin axis is misaligned with the orbital plane of its companion star2. Recently, theoretical simulations have suggested that the jets can exert an additional torque on the accretion flow3, although the interplay between the dynamics of the accretion flow and the launching of the jets is not yet understood. Here we report a rapidly changing jet orientation—on a time scale of minutes to hours—in the black-hole X-ray binary V404 Cygni, detected with very-long-baseline interferometry during the peak of its 2015 outburst. We show that this changing jet orientation can be modelled as the Lense–Thirring precession of a vertically extended slim disk that arises from the super-Eddington accretion rate4. Our findings suggest that the dynamics of the precessing inner accretion disk could play a role in either directly launching or redirecting the jets within the inner few hundred gravitational radii. Similar dynamics should be expected in any strongly accreting black hole whose spin is misaligned with the inflowing gas, both affecting the observational characteristics of the jets and distributing the black-hole feedback more uniformly over the surrounding environment5,6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: VLBA monitoring of the radio jets during the 2015 outburst of V404 Cygni.
Fig. 2: Position angles of jet components.
Fig. 3: Total angular separations from the core for all jet components on 22 June 2015.
Fig. 4: Constraints on the jet speed and inclination angle to the line of sight.

Similar content being viewed by others

Data availability

The raw VLBA data are publicly available from the NRAO archive (https://archive.nrao.edu/archive/advquery.jsp), under project codes BM421 and BS249. All software packages used in our analysis (AIPS, Difmap, CASA, UVMULTIFIT and EMCEE) are publicly available. The final calibrated images and uv-data are available from the corresponding author upon reasonable request. The data underlying the figures are available as csv or xlsx files, and the measured positions and flux densities of all VLBA components from 22 June 2015 are included with the MCMC fitting code (see below).

Code availability

The MCMC fitting code is available at https://github.com/tetarenk/jet-jitter.

References

  1. Ingram, A. et al. A quasi-periodic modulation of the iron line centroid energy in the black hole binary H1743–322. Mon. Not. R. Astron. Soc. 461, 1967–1980 (2016).

    Article  ADS  CAS  Google Scholar 

  2. Lense, J. & Thirring, H. Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19, 156–163 (1918).

    MATH  Google Scholar 

  3. Liska, M. et al. Formation of precessing jets by tilted black hole discs in 3D general relativistic MHD simulations. Mon. Not. R. Astron. Soc. 474, L81–L85 (2018).

    Article  ADS  Google Scholar 

  4. Motta, S. E. et al. Swift observations of V404 Cyg during the 2015 outburst: X-ray outflows from super-Eddington accretion. Mon. Not. R. Astron. Soc. 471, 1797–1818 (2017).

    Article  ADS  CAS  Google Scholar 

  5. Vernaleo, J. C. & Reynolds, C. S. AGN feedback and cooling flows: problems with simple hydrodynamic models. Astrophys. J. 645, 83–94 (2006).

    Article  ADS  Google Scholar 

  6. Falceta-Gonçalves, D., Caproni, A., Abraham, Z., Teixeira, D. M. & de Gouveia Dal Pino, E. M. Precessing jets and X-ray bubbles from NGC 1275 (3C 84) in the Perseus galaxy cluster: a view from three-dimensional numerical simulations. Astrophys. J. 713, L74–L78 (2010).

    Article  ADS  Google Scholar 

  7. Rodriguez, J. et al. Correlated optical, X-ray, and γ-ray flaring activity seen with INTEGRAL during the 2015 outburst of V404 Cygni. Astron. Astrophys. 581, L9 (2015).

    Article  ADS  Google Scholar 

  8. Shahbaz, T. et al. The mass of the black hole in V404 Cygni. Mon. Not. R. Astron. Soc. 271, L10–L14 (1994).

    Article  ADS  Google Scholar 

  9. Miller-Jones, J. C. A. et al. The first accurate parallax distance to a black hole. Astrophys. J. 706, L230–L234 (2009).

    Article  ADS  Google Scholar 

  10. Corbel, S. et al. Coupling of the X-ray and radio emission in the black hole candidate and compact jet source GX 339-4. Astron. Astrophys. 359, 251–268 (2000).

    ADS  Google Scholar 

  11. Han, X. & Hjellming, R. M. Radio observations of the 1989 transient event in V404 Cygni (=GS 2023+338). Astrophys. J. 400, 304–314 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Tetarenko, A. J. et al. Extreme jet ejections from the black hole X-ray binary V404 Cygni. Mon. Not. R. Astron. Soc. 469, 3141–3162 (2017).

    Article  ADS  CAS  Google Scholar 

  13. Miller-Jones, J. C. A. et al. The formation of the black hole in the X-ray binary system V404 Cyg. Mon. Not. R. Astron. Soc. 394, 1440–1448 (2009).

    Article  ADS  CAS  Google Scholar 

  14. Stella, L. & Vietri, M. Lense–Thirring precession and quasi-periodic oscillations in low-mass X-ray binaries. Astrophys. J. 492, L59–L62 (1998).

    Article  ADS  Google Scholar 

  15. Fragile, P. C., Blaes, O. M., Anninos, P. & Salmonson, J. D. Global general relativistic magnetohydrodynamic simulation of a tilted black hole accretion disk. Astrophys. J. 668, 417–429 (2007).

    Article  ADS  Google Scholar 

  16. Papaloizou, J. C. B. & Terquem, C. On the dynamics of tilted discs around young stars. Mon. Not. R. Astron. Soc. 274, 987–1001 (1995).

    ADS  Google Scholar 

  17. Motta, S. E., Franchini, A., Lodato, G. & Mastroserio, G. On the different flavours of Lense–Thirring precession around accreting stellar mass black holes. Mon. Not. R. Astron. Soc. 473, 431–439 (2018).

    Article  ADS  Google Scholar 

  18. Begelman, M. C., King, A. R. & Pringle, J. E. The nature of SS 433 and the ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 370, 399–404 (2006).

    Article  ADS  Google Scholar 

  19. Poutanen, J., Lipunova, G., Fabrika, S., Butkevich, A. G. & Abolmasov, P. Supercritically accreting stellar mass black holes as ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 377, 1187–1194 (2007).

    Article  ADS  Google Scholar 

  20. Huppenkothen, D. et al. Detection of very low-frequency, quasi-periodic oscillations in the 2015 outburst of V404 Cygni. Astrophys. J. 834, 90 (2017).

    Article  ADS  Google Scholar 

  21. Apostolatos, T. A., Cutler, C., Sussman, G. J. & Thorne, K. S. Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries. Phys. Rev. D 49, 6274–6297 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Middleton, M. J. et al. Lense–Thirring precession in ULXs as a possible means to constrain the neutron star equation of state. Mon. Not. R. Astron. Soc. 475, 154–166 (2018).

    Article  ADS  CAS  Google Scholar 

  23. Stone, N., Loeb, A. & Berger, E. Pulsations in short gamma ray bursts from black hole-neutron star mergers. Phys. Rev. D 87, 084053 (2013).

    Article  ADS  Google Scholar 

  24. Lei, W.-H., Zhang, B. & Gao, H. Frame dragging, disk warping, jet precessing, and dipped X-ray light curve of Sw J1644+57. Astrophys. J. 762, 98 (2013).

    Article  ADS  Google Scholar 

  25. Weinberger, R. et al. Simulating galaxy formation with black hole driven thermal and kinetic feedback. Mon. Not. R. Astron. Soc. 465, 3291–3308 (2017).

    Article  ADS  CAS  Google Scholar 

  26. Caproni, A. & Abraham, Z. Can long-term periodic variability and jet helicity in 3C 120 be explained by jet precession? Mon. Not. R. Astron. Soc. 349, 1218–1226 (2004).

    Article  ADS  Google Scholar 

  27. Nagai, H. et al. VLBI monitoring of 3C 84 (NGC 1275) in early phase of the 2005 outburst. Publ. Astron. Soc. Jpn. 62, L11–L15 (2010).

    Article  ADS  Google Scholar 

  28. Britzen, S. et al. OJ287: deciphering the ‘Rosetta stone’ of blazars. Mon. Not. R. Astron. Soc. 478, 3199–3219 (2018).

    ADS  Google Scholar 

  29. Muñoz-Darias, T. et al. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni. Nature 534, 75–78 (2016).

    Article  ADS  Google Scholar 

  30. Khargharia, J., Froning, C. S. & Robinson, E. L. Near-infrared spectroscopy of low-mass X-ray binaries: accretion disk contamination and compact object mass determination in V404 Cyg and Cen X-4. Astrophys. J. 716, 1105–1117 (2010).

    Article  ADS  CAS  Google Scholar 

  31. Greisen, E. W. AIPS, the VLA, and the VLBA. Information Handling in Astronomy—Historical Vistas, Vol. 285 (ed. Heck, A.) 109–125 (Astrophysics and Space Science Library, 2003).

  32. Ma, C. et al. The international celestial reference frame as realized by very long baseline interferometry. Astron. J. 116, 516–546 (1998).

    Article  ADS  Google Scholar 

  33. Shepherd, M. C. Difmap: an interactive program for synthesis imaging. Astronomical Data Analysis Software and Systems VI, Vol. 125 (eds Hunt, G. & Payne, H.) 77–84 (Astronomical Society of the Pacific Conference Series, 1997).

  34. McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA Architecture and Applications. Astronomical Data Analysis Software and Systems XVI, Vol. 376 (eds Shaw, R. A., Hill, F. & Bell, D. J.) 127–130 (Astronomical Society of the Pacific Conference Series, 2007).

  35. Martí-Vidal, I., Vlemmings, W. H. T., Muller, S. & Casey, S. UVMULTIFIT: a versatile tool for fitting astronomical radio interferometric data. Astron. Astrophys. 563, A136 (2014).

    Article  ADS  Google Scholar 

  36. Fomalont, E. B., Geldzahler, B. J. & Bradshaw, C. F. Scorpius X-1: the evolution and nature of the twin compact radio lobes. Astrophys. J. 558, 283–301 (2001).

    Article  ADS  Google Scholar 

  37. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pacif. 125, 306–312 (2013).

    Article  ADS  Google Scholar 

  38. Gómez, J. L., Martí, J. M., Marscher, A. P., Ibáñez, J. M. & Alberdi, A. Hydrodynamical models of superluminal sources. Astrophys. J. 482, L33–L36 (1997).

    Article  ADS  Google Scholar 

  39. Mimica, P. et al. Spectral evolution of superluminal components in parsec-scale jets. Astrophys. J. 696, 1142–1163 (2009).

    Article  ADS  CAS  Google Scholar 

  40. Hjellming, R. M. & Rupen, M. P. Episodic ejection of relativistic jets by the X-ray transient GRO J1655−40. Nature 375, 464–468 (1995).

    Article  ADS  CAS  Google Scholar 

  41. Fendt, C. & Sheikhnezami, S. Bipolar jets launched from accretion disks. II. The formation of asymmetric jets and counter jets. Astrophys. J. 774, 12 (2013).

    Article  ADS  Google Scholar 

  42. Miller-Jones, J. C. A., Blundell, K. M. & Duffy, P. Jet evolution, flux ratios, and light-travel time effects. Astrophys. J. 603, L21–L24 (2004).

    Article  ADS  Google Scholar 

  43. Pinto, C., Middleton, M. J. & Fabian, A. C. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources. Nature 533, 64–67 (2016).

    Article  ADS  CAS  Google Scholar 

  44. Pinto, C. et al. From ultraluminous X-ray sources to ultraluminous supersoft sources: NGC 55 ULX, the missing link. Mon. Not. R. Astron. Soc. 468, 2865–2883 (2017).

    Article  ADS  CAS  Google Scholar 

  45. Ziółkowski, J. & Zdziarski, A. A. Non-conservative mass transfer in stellar evolution and the case of V404 Cyg/GS 2023+338. Mon. Not. R. Astron. Soc. 480, 1580–1586 (2018).

    Article  ADS  Google Scholar 

  46. Shahbaz, T. et al. Evidence for magnetic field compression in shocks within the jet of V404 Cyg. Mon. Not. R. Astron. Soc. 463, 1822–1830 (2016).

    Article  ADS  Google Scholar 

  47. Roberts, W. J. A slaved disk model for Hercules X-1. Astrophys. J. 187, 575–584 (1974).

    Article  ADS  Google Scholar 

  48. Hut, P. & van den Heuvel, E. P. J. Precession and system parameters in early-type binary models for SS 433. Astron. Astrophys. 94, 327–332 (1981).

    ADS  CAS  Google Scholar 

  49. Wijers, R. A. M. J. & Pringle, J. E. Warped accretion discs and the long periods in X-ray binaries. Mon. Not. R. Astron. Soc. 308, 207–220 (1999).

    Article  ADS  Google Scholar 

  50. Ogilvie, G. I. & Dubus, G. Precessing warped accretion discs in X-ray binaries. Mon. Not. R. Astron. Soc. 320, 485–503 (2001).

    Article  ADS  Google Scholar 

  51. Whitehurst, R. & King, A. Superhumps, resonances and accretion discs. Mon. Not. R. Astron. Soc. 249, 25–35 (1991).

    Article  ADS  Google Scholar 

  52. Mushtukov, A. A., Suleimanov, V. F., Tsygankov, S. S. & Ingram, A. Optically thick envelopes around ULXs powered by accreting neutron stars. Mon. Not. R. Astron. Soc. 467, 1202–1208 (2017).

    ADS  CAS  Google Scholar 

  53. Walton, D. J. et al. Living on a flare: relativistic reflection in V404 Cyg observed by NuSTAR during its summer 2015 outburst. Astrophys. J. 839, 110 (2017).

    Article  ADS  Google Scholar 

  54. Jiang, Y.-F., Stone, J. M. & Davis, S. W. A global three-dimensional radiation magnetohydrodynamic simulation of super-Eddington accretion disks. Astrophys. J. 796, 106 (2014).

    Article  ADS  Google Scholar 

  55. Fender, R. in Compact Stellar X-Ray Sources (eds Lewin, W. & van der Klis, M.) 381–419 (Cambridge Univ. Press, 2006).

  56. Gandhi, P. et al. An elevation of 0.1 light-seconds for the optical jet base in an accreting Galactic black hole system. Nat. Astron. 1, 859–864 (2017).

    Article  ADS  Google Scholar 

  57. Pakull, M. W., Soria, R. & Motch, C. A. 300-parsec-long jet-inflated bubble around a powerful microquasar in the galaxy NGC 7793. Nature 466, 209–212 (2010).

    Article  ADS  CAS  Google Scholar 

  58. Soria, R. et al. Super-Eddington mechanical power of an accreting black hole in M83. Science 343, 1330–1333 (2014).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. J.C.A.M.-J. is the recipient of an Australian Research Council Future Fellowship (FT140101082) funded by the Australian Government. A.J.T. is supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Post-Graduate Doctoral Scholarship (PGSD2-490318-2016). A.J.T. and G.R.S. acknowledge support from NSERC Discovery Grants (RGPIN-402752-2011 and RGPIN-06569-2016). M.J.M. acknowledges support from a Science and Technology Facilities Council (STFC) Ernest Rutherford Fellowship. D.A. acknowledges support from the Royal Society. G.E.A. is the recipient of an Australian Research Council Discovery Early Career Researcher Award (project number DE180100346) funded by the Australian Government. T.M.B. acknowledges a financial contribution from the agreement ASI-INAF n.2017-14-H.0. P.G.J. acknowledges funding from the European Research Council under ERC Consolidator Grant agreement 647208. S. Markoff and T.D.R. acknowledge support from a Netherlands Organisation for Scientific Research (NWO) Veni Fellowship and Vici Grant, respectively. K.P.M. acknowledges support from the Oxford Centre for Astrophysical Surveys, which is funded through the Hintze Family Charitable Foundation. K.P.M. is currently a Jansky Fellow of the National Radio Astronomy Observatory. This work profited from discussions carried out during a meeting on multi-wavelength rapid variability organized at the International Space Science Institute (ISSI) Beijing by T.M.B. and D. Bhattacharya. The authors acknowledge the worldwide effort in observing this outburst, and the planning tools (created by T. Marsh and coordinated by C. Knigge) that enabled these observations.

Reviewer information

Nature thanks José L. Gómez and Christopher Reynolds for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

J.C.A.M.-J. wrote the manuscript with input from all authors. J.C.A.M.-J. wrote the observing proposal BM421 with help from all authors. G.R.S. wrote the observing proposal BS249 with help from J.C.A.M.-.J., A.J.T., R.P.F., P.G.J., G.E.A. and K.P.M. J.C.A.M.-J. designed and processed the VLBA observations. A.J.T. performed the Monte Carlo modelling. J.C.A.M.-J., A.J.T. and G.R.S. analysed the data. M.J.M. led the development of the Lense–Thirring precession scenario, with help from S. Markoff.

Corresponding author

Correspondence to James C. A. Miller-Jones.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Position angles of the jet components on 22 June 2015.

Angles are shown relative to the jitter-corrected centroid position, with 1σ uncertainties. Corresponding pairs of components (N2/S2, N3/S3 and N6/S6) are shown with matching colours and marker shapes. The mean position angles are shown as dashed (northern components) or solid (southern components) lines. Swings in position angle arise because of components blending as one gives way to another (for example, S2/S3). The dotted black line shows the orientation of the VLBA synthesized beam, which does not match the component position angles. Discrete jumps in beam orientation correspond to antennas entering or leaving the array.

Source data

Extended Data Fig. 2 Best-fitting proper motions of the different components on 22 June 2015.

Corresponding pairs of components (N2/S2, N3/S3 and N6/S6) are shown with the same colour. The orientation shows the direction of motion, and the length denotes the magnitude (distance travelled in one day). 1σ uncertainties are indicated by dotted lines (which, given the small uncertainties, merge into the solid lines). The measured position angles range from −0.2° to −28.6° east of north (similar to the range of angles seen over the full outburst duration), providing a lower limit on the precession-cone half-opening angle of 14.2°, consistent with the 18° lower limit inferred from the 8.4-GHz data.

Source data

Extended Data Fig. 3 Motion of the observed components on 22 June 2015.

a, b, Positions are corrected for atmospheric jitter, and shown in both right ascension (a) and declination (b), with 1σ uncertainties (often smaller than the marker size). Corresponding pairs of ejecta have matching colours and marker shapes. The core (C) is shown by filled black circles, and does not appear to move systematically over time. The best-fitting proper motions are shown as dashed (northern) and solid (southern) lines. The motion in declination is larger than that in right ascension for all components. Other than N8 and N9, all components move ballistically away from the core.

Source data

Extended Data Fig. 4 Light curves for the individual components as a function of time on 22 June 2015.

Corresponding pairs of ejecta have matching colours and marker shapes, with empty markers for northern components and filled markers for southern components. Uncertainties are shown at 1σ. The top curve (empty black circles) indicates the integrated 15.4-GHz light curve (including the core source, C).

Source data

Extended Data Fig. 5 Slim-disk precession parameters.

a, Calculated precession time scales and b, spherization radii (where the disk becomes geometrically thicker), as a function of the Eddington-scaled mass-accretion rate, \(\dot{m}\), and the dimensionless spin parameter a. Red lines illustrate the minimal impact of changing the fraction εw of the accretion power used to launch the inner disk wind. The grey horizontal line in panel a shows the 18 mHz frequency of the most compelling X-ray QPO20. For precession time scales on the order of minutes, we would need Eddington-scaled accretion rates of 10–100 \({\dot{m}}_{{\rm{E}}{\rm{d}}{\rm{d}}}\) (depending on the black-hole spin), corresponding to spherization radii of 60–400 rg.

Extended Data Table 1 VLBA observing log for the June 2015 outburst of V404 Cygni
Extended Data Table 2 Measured position angles on the plane of the sky for the 8.4-GHz monitoring observations
Extended Data Table 3 Measured component parameters for the observations of 22 June 2015
Extended Data Table 4 Prior distributions for the parameters of the atmospheric jitter correction model
Extended Data Table 5 Inferred physical parameters for our identified paired ejecta from 22 June 2015

Supplementary information

Video 1: Video showing the evolution of the jet morphology over four hours on 22 June 2015.

Time (indicated in UT) has been sped up by a factor of 1000. In the 103 separate snapshot images, we identify twelve separate components, together with a persistent core. Ejected components appear to move ballistically outwards over time, with varying proper motions and position angles, implying precession of the jet axis. Images have been corrected for atmospheric jitter (see Methods). Contours are at ±(√2)n times the rms noise level of 3 mJy beam−1, where n=3,4,5,.... Top colour bar is in units of mJy beam−1.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller-Jones, J.C.A., Tetarenko, A.J., Sivakoff, G.R. et al. A rapidly changing jet orientation in the stellar-mass black-hole system V404 Cygni. Nature 569, 374–377 (2019). https://doi.org/10.1038/s41586-019-1152-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-019-1152-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing