Greater vulnerability to warming of marine versus terrestrial ectotherms


Understanding which species and ecosystems will be most severely affected by warming as climate change advances is important for guiding conservation and management. Both marine and terrestrial fauna have been affected by warming1,2 but an explicit comparison of physiological sensitivity between the marine and terrestrial realms has been lacking. Assessing how close populations live to their upper thermal limits has been challenging, in part because extreme temperatures frequently drive demographic responses3,4 and yet fauna can use local thermal refugia to avoid extremes5,6,7. Here we show that marine ectotherms experience hourly body temperatures that are closer to their upper thermal limits than do terrestrial ectotherms across all latitudes—but that this is the case only if terrestrial species can access thermal refugia. Although not a direct prediction of population decline, this thermal safety margin provides an index of the physiological stress caused by warming. On land, the smallest thermal safety margins were found for species at mid-latitudes where the hottest hourly body temperatures occurred; by contrast, the marine species with the smallest thermal safety margins were found near the equator. We also found that local extirpations related to warming have been twice as common in the ocean as on land, which is consistent with the smaller thermal safety margins at sea. Our results suggest that different processes will exacerbate thermal vulnerability across these two realms. Higher sensitivities to warming and faster rates of colonization in the marine realm suggest that extirpations will be more frequent and species turnover faster in the ocean. By contrast, terrestrial species appear to be more vulnerable to loss of access to thermal refugia, which would make habitat fragmentation and changes in land use critical drivers of species loss on land.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Extreme hot temperatures across latitudes in terrestrial and marine environments.
Fig. 2: Greater thermal safety on land if thermal refugia are available.

Data availability

The upper thermal-tolerance data and extirpation data that support the findings of this study are available at Zenodo under the identifier: Any other relevant data are available from the corresponding author upon reasonable request.

Code availability

Custom analysis scripts are available at Zenodo under the identifier:


  1. 1.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925 (2013).

    ADS  Google Scholar 

  2. 2.

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Google Scholar 

  3. 3.

    Ma, G., Rudolf, V. H. W. & Ma, C. S. Extreme temperature events alter demographic rates, relative fitness, and community structure. Glob. Chang. Biol. 21, 1794–1808 (2015).

    ADS  PubMed  Google Scholar 

  4. 4.

    Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000).

    ADS  CAS  PubMed  Google Scholar 

  5. 5.

    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).

    ADS  CAS  PubMed  Google Scholar 

  6. 6.

    Lima, F. P. et al. Loss of thermal refugia near equatorial range limits. Glob. Chang. Biol. 22, 254–263 (2016).

    ADS  PubMed  Google Scholar 

  7. 7.

    Potter, K. A., Woods, H. A. & Pincebourde, S. Microclimatic challenges in global change biology. Glob. Chang. Biol. 19, 2932–2939 (2013).

    ADS  PubMed  Google Scholar 

  8. 8.

    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Luck, G. W., Daily, G. C. & Ehrlich, P. R. Population diversity and ecosystem services. Trends Ecol. Evol. 18, 331–336 (2003).

    Google Scholar 

  10. 10.

    IPCC. In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pachauri, R. K. & Meyer, L. A.) 2–34 (IPCC, 2014).

  11. 11.

    Finnegan, S., Heim, N. A., Peters, S. E. & Fischer, W. W. Climate change and the selective signature of the Late Ordovician mass extinction. Proc. Natl Acad. Sci. USA 109, 6829–6834 (2012).

    ADS  CAS  PubMed  Google Scholar 

  12. 12.

    Penn, J. L., Deutsch, C., Payne, J. L., & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).

    ADS  PubMed  Google Scholar 

  13. 13.

    Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. Lond. B 281, 20132612 (2014).

    Google Scholar 

  14. 14.

    Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).

    ADS  CAS  PubMed  Google Scholar 

  15. 15.

    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    ADS  CAS  PubMed  Google Scholar 

  16. 16.

    Bonebrake, T. C. & Deutsch, C. A. Climate heterogeneity modulates impact of warming on tropical insects. Ecology 93, 449–455 (2012).

    PubMed  Google Scholar 

  17. 17.

    Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Chang. 7, 718–722 (2017).

    ADS  Google Scholar 

  18. 18.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Chang. 2, 686–690 (2012).

    ADS  Google Scholar 

  19. 19.

    Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).

    ADS  PubMed  Google Scholar 

  20. 20.

    Pörtner, H. O. et al. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change (eds Field, C. B. et al.) 411–484 (Cambridge Univ. Press, 2014).

  21. 21.

    Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. Lond. B 282, 20150401 (2015).

    Google Scholar 

  22. 22.

    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Chang. 5, 61–66 (2015).

    ADS  Google Scholar 

  23. 23.

    Diamond, S. E. et al. A physiological trait-based approach to predicting the responses of species to experimental climate warming. Ecology 93, 2305–2312 (2012).

    PubMed  Google Scholar 

  24. 24.

    Hamblin, A. L., Youngsteadt, E., López-Uribe, M. M. & Frank, S. D. Physiological thermal limits predict differential responses of bees to urban heat-island effects. Biol. Lett. 13, 20170125 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Hoffmann, A. A. Physiological climatic limits in Drosophila: patterns and implications. J. Exp. Biol. 213, 870–880 (2010).

    CAS  PubMed  Google Scholar 

  26. 26.

    Huey, R. B. et al. Why tropical forest lizards are vulnerable to climate warming. Proc. R. Soc. Lond. B 276, 1939–1948 (2009).

    Google Scholar 

  27. 27.

    Gunderson, A. R. & Leal, M. A conceptual framework for understanding thermal constraints on ectotherm activity with implications for predicting responses to global change. Ecol. Lett. 19, 111–120 (2016).

    PubMed  Google Scholar 

  28. 28.

    Gunderson, A. R., Dillon, M. E. & Stillman, J. H. Estimating the benefits of plasticity in ectotherm heat tolerance under natural thermal variability. Funct. Ecol. 31, 1529–1539 (2017).

    Google Scholar 

  29. 29.

    Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).

    ADS  CAS  PubMed  Google Scholar 

  30. 30.

    Parmesan, C., Root, T. L. & Willig, M. R. Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteorol. Soc. 81, 443–450 (2000).

    ADS  Google Scholar 

  31. 31.

    Donat, M. G. et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J. Geophys. Res. 118, 2098–2118 (2013).

    ADS  Google Scholar 

  32. 32.

    Reynolds, R. W. et al. Daily high-resolution blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).

    ADS  Google Scholar 

  33. 33.

    Kennedy, J. J., Brohan, P. & Tett, S. F. B. A global climatology of the diurnal variations in sea-surface temperature and implications for MSU temperature trends. Geophys. Res. Lett. 34, 1–5 (2007).

    Google Scholar 

  34. 34.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. Lond. B 278, 1823–1830 (2011).

    Google Scholar 

  35. 35.

    Scholander, P. F., Flagg, W., Walters, V. & Irving, L. Climatic adaptation in arctic and tropical poikilotherms. Physiol. Zool. 26, 67–92 (1953).

    Google Scholar 

  36. 36.

    Morley, S. A. et al. Rates of warming and the global sensitivity of shallow water marine invertebrates to elevated temperature. J. Mar. Biol. Assoc. U.K. 96, 159–165 (2016).

    Google Scholar 

  37. 37.

    Urban, H. J. Upper temperature tolerance of ten bivalve species off Peru and Chile related to El Niño. Mar. Ecol. Prog. Ser. 107, 139–145 (1994).

    ADS  Google Scholar 

  38. 38.

    Zerebecki, R. A. & Sorte, C. J. B. Temperature tolerance and stress proteins as mechanisms of invasive species success. PLoS ONE 6, e14806 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Ansell, A. D. & McLachlan, A. Upper temperature tolerances of three molluscs from South African sandy beaches. J. Exp. Mar. Biol. Ecol. 48, 243–251 (1980).

    Google Scholar 

  40. 40.

    Madeira, D., Narciso, L., Cabral, H. N. & Vinagre, C. Thermal tolerance and potential impacts of climate change on coastal and estuarine organisms. J. Sea Res. 70, 32–41 (2012).

    ADS  Google Scholar 

  41. 41.

    Vinagre, C. et al. Effect of temperature in multiple biomarkers of oxidative stress in coastal shrimp. J. Therm. Biol. 41, 38–42 (2014).

    CAS  PubMed  Google Scholar 

  42. 42.

    Prentice, E. F. & Schneider, D. E. Respiration and thermal tolerance of the Dungeness crab, Cancer magister Dana. Comp. Biochem. Physiol. A 63, 591–597 (1979).

    Google Scholar 

  43. 43.

    Kennedy, V. S. & Mihursky, J. A. Upper temperature tolerances of some estuarine bivalves. Chesap. Sci. 12, 193–204 (1971).

    Google Scholar 

  44. 44.

    Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: history and critique. Can. J. Zool. 75, 1561–1574 (1997).

    Google Scholar 

  45. 45.

    Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol. Lett. 19, 1372–1385 (2016).

    PubMed  Google Scholar 

  46. 46.

    Willmott, C. J. & Matsuura, K. Terrestrial air temperature: 1900–2014 gridded monthly time series (v.4.01), accessed September 2016.

  47. 47.

    Danielson, J. J. & Gesch, D. B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010). Report No. 2011-1073 (U.S. Geological Survey, 2011).

  48. 48.

    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (Chapman and Hall/CRC, Boca Raton, 2017).

  49. 49.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn (Springer, New York, 2002).

    Google Scholar 

  50. 50.

    Bakken, G. S. Measurement and application of operative and standard operative temperatures in ecology. Am. Zool. 32, 194–216 (1992).

    Google Scholar 

  51. 51.

    Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).

    PubMed  Google Scholar 

  52. 52.

    Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc. Natl Acad. Sci. USA 106, 3835–3840 (2009).

    ADS  CAS  PubMed  Google Scholar 

  53. 53.

    Kearney, M. R. & Porter, W. P. NicheMapR – an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).

    Google Scholar 

  54. 54.

    Chamberlain, S. rnoaa: ‘NOAA’ Weather Data from R. R package version 0.7.0. (2017).

  55. 55.

    Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. & Houston, T. G. An overview of the global historical climatology network-daily database. J. Atmos. Ocean. Technol. 29, 897–910 (2012).

    ADS  Google Scholar 

  56. 56.

    Sears, M. W. et al. Configuration of the thermal landscape determines thermoregulatory performance of ectotherms. Proc. Natl Acad. Sci. USA 113, 10595–10600 (2016).

    CAS  PubMed  Google Scholar 

  57. 57.

    Grigg, G. C., Drane, C. R. & Courtice, G. P. Time constants of heating and cooling in the eastern water dragon, Physignathus lesueruii, and some generalizations about heating and cooling in reptiles. J. Therm. Biol. 4, 95–103 (1979).

    Google Scholar 

  58. 58.

    Denny, M. W. Air and Water: The Biology and Physics of Life’s Media (Princeton Univ. Press, Princeton, 1993).

    Google Scholar 

  59. 59.

    Locarnini, R. A. et al. World Ocean Atlas 2013, Volume 1: Temperature (National Oceanographic Data Center, Silver Spring, 2013).

    Google Scholar 

  60. 60.

    Freitas, C., Olsen, E. M., Knutsen, H., Albretsen, J. & Moland, E. Temperature-associated habitat selection in a cold-water marine fish. J. Anim. Ecol. 85, 628–637 (2016).

    PubMed  Google Scholar 

  61. 61.

    Holland, K. N., Brill, R. W., Chang, R. K. C., Sibert, J. R. & Fournier, D. A. Physiological and behavioural thermoregulation in bigeye tuna (Thunnus obesus). Nature 358, 410–412 (1992).

    ADS  CAS  PubMed  Google Scholar 

  62. 62.

    Freitas, C., Olsen, E. M., Moland, E., Ciannelli, L. & Knutsen, H. Behavioral responses of Atlantic cod to sea temperature changes. Ecol. Evol. 5, 2070–2083 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Aspillaga, E. et al. Thermal stratification drives movement of a coastal apex predator. Sci. Rep. 7, 526 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Brownscombe, J. W., Cooke, S. J. & Danylchuk, A. J. Spatiotemporal drivers of energy expenditure in a coastal marine fish. Oecologia 183, 689–699 (2017).

    ADS  PubMed  Google Scholar 

  65. 65.

    Hight, B. V. & Lowe, C. G. Elevated body temperatures of adult female leopard sharks, Triakis semifasciata, while aggregating in shallow nearshore embayments: evidence for behavioral thermoregulation? J. Exp. Mar. Biol. Ecol. 352, 114–128 (2007).

    Google Scholar 

  66. 66.

    Watson, W. H., III, Schaller, S. Y. & Chabot, C. C. in Biology and Conservation of Horseshoe Crabs (eds Tanacredi, J. T. et al.) 131–147 (Springer US, Boston, 2009).

  67. 67.

    Jury, S. H. & Watson, W. H. Seasonal and sexual differences in the thermal preferences and movements of American lobsters. Can. J. Fish. Aquat. Sci. 70, 1650–1657 (2013).

    Google Scholar 

  68. 68.

    Herrera, F. D., Ramirez, F. B., Sevilla, B. B. & Farfán, C. Behavioral thermoregulation of Bulla gouldiana (Gastropoda: Opisthobranchia: Cephalaspidea). J. Therm. Biol. 21, 319–322 (1996).

    Google Scholar 

  69. 69.

    Díaz, F. et al. Thermal preference and tolerance of green abalone Haliotis fulgens (Philippi, 1845) and pink abalone Haliotis corrugata (Gray, 1828). Aquacult. Res. 37, 877–884 (2006).

    Google Scholar 

  70. 70.

    McCauley, D. J. et al. Marine defaunation: animal loss in the global ocean. Science 347, 1255641 (2015).

    PubMed  Google Scholar 

  71. 71.

    Elder, L. E. & Seibel, B. A. The thermal stress response to diel vertical migration in the hyperiid amphipod Phronima sedentaria. Comp. Biochem. Physiol. A 187, 20–26 (2015).

    CAS  Google Scholar 

  72. 72.

    Werner, T. & Buchholz, F. Diel vertical migration behaviour in Euphausiids of the northern Benguela current: seasonal adaptations to food availability and strong gradients of temperature and oxygen. J. Plankton Res. 35, 792–812 (2013).

    CAS  Google Scholar 

  73. 73.

    Froese, R. & Pauly, D. FishBase version 12/2017, accessed December 2017.

  74. 74.

    Boettiger, C., Chamberlain, S., Temple Lang, D. & Wainwright, P. rfishbase: R Interface to ‘FishBase’'. R package version (2016).

  75. 75.

    Diamond, S. E. et al. A physiological trait-based approach to predicting the responses of species to experimental climate warming. Ecology 93, 2305–2312 (2012).

    PubMed  Google Scholar 

  76. 76.

    Dong, Y.-w. et al. Untangling the roles of microclimate, behaviour and physiological polymorphism in governing vulnerability of intertidal snails to heat stress. Proc. R. Soc. Lond. B 284, 20162367 (2017).

    Google Scholar 

  77. 77.

    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Phil. Trans. R. Soc. Lond. B 367, 1665–1679 (2012).

    Google Scholar 

  78. 78.

    Kingsolver, J. G., Diamond, S. E. & Buckley, L. B. Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Funct. Ecol. 27, 1415–1423 (2013).

    Google Scholar 

  79. 79.

    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).

    ADS  CAS  PubMed  Google Scholar 

  80. 80.

    Collins, M. et al. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 1029–1136 (Cambridge Univ. Press, 2013).

  81. 81.

    Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X. & Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J. Geophys. Res. 118, 2473–2493 (2013).

    ADS  Google Scholar 

  82. 82.

    Gentemann, C. L. & Minnett, P. J. Radiometric measurements of ocean surface thermal variability. J. Geophys. Res. 113, C08017 (2008).

    ADS  Google Scholar 

  83. 83.

    Munday, P. L., Donelson, J. M. & Domingos, J. A. Potential for adaptation to climate change in a coral reef fish. Glob. Chang. Biol. 23, 307–317 (2017).

    ADS  PubMed  Google Scholar 

  84. 84.

    Donelson, J. M. Development in a warm future ocean may enhance performance in some species. J. Exp. Mar. Biol. Ecol. 472, 119–125 (2015).

    Google Scholar 

  85. 85.

    Donelson, J. M., Munday, P. L., McCormick, M. I. & Pitcher, C. R. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Chang. 2, 30–32 (2012).

    ADS  Google Scholar 

  86. 86.

    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    ADS  CAS  PubMed  Google Scholar 

  87. 87.

    Bates, D., Maechler, M., Bolker, B. M. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  88. 88.

    Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R 2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Google Scholar 

  90. 90.

    Chen, B. Patterns of thermal limits of phytoplankton. J. Plankton Res. 37, 285–292 (2015).

    Google Scholar 

  91. 91.

    Beaugrand, G., Luczak, C. & Edwards, M. Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob. Chang. Biol. 15, 1790–1803 (2009).

    Google Scholar 

  92. 92.

    Hiddink, J. G., Burrows, M. T. & García Molinos, J. Temperature tracking by North Sea benthic invertebrates in response to climate change. Glob. Chang. Biol. 21, 117–129 (2015).

    ADS  PubMed  Google Scholar 

  93. 93.

    Nye, J. A., Link, J. S., Hare, J. A. & Overholtz, W. J. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393, 111–129 (2009).

    ADS  Google Scholar 

  94. 94.

    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

    ADS  CAS  PubMed  Google Scholar 

  95. 95.

    Pitt, N. R., Poloczanska, E. S. & Hobday, A. J. Climate-driven range changes in Tasmanian intertidal fauna. Mar. Freshw. Res. 61, 963–970 (2010).

    CAS  Google Scholar 

  96. 96.

    Rubal, M., Veiga, P., Cacabelos, E., Moreira, J. & Sousa-Pinto, I. Increasing sea surface temperature and range shifts of intertidal gastropods along the Iberian Peninsula. J. Sea Res. 77, 1–10 (2013).

    ADS  Google Scholar 

  97. 97.

    Franco, A. M. A. et al. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob. Chang. Biol. 12, 1545–1553 (2006).

    ADS  Google Scholar 

  98. 98.

    Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Glob. Chang. Biol. 11, 502–506 (2005).

    ADS  Google Scholar 

  99. 99.

    Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).

    ADS  CAS  Google Scholar 

  100. 100.

    Wu, J. Detecting and attributing the effects of climate change on the distributions of snake species over the past 50 years. Environ. Manage. 57, 207–219 (2016).

    ADS  PubMed  Google Scholar 

  101. 101.

    Wu, J. Can changes in the distribution of lizard species over the past 50 years be attributed to climate change? Theor. Appl. Climatol. 125, 785–798 (2016).

    ADS  Google Scholar 

Download references


We thank P. Falkowski, A. Gunderson, R. Huey, H. John-Alder, F. Joyce, G. Saba, B. Seibel, M. Tingley and members of the Pinsky laboratory for discussions; and D. L. Forrest for assistance with data compilation. This research was partially conducted on a research exchange at the University of Oslo, supported by the Nordforsk-funded project ‘Green Growth Based on Marine Resources: Ecological and Socio-Economic Constraints (GreenMAR)’. We also acknowledge support from the Alfred P. Sloan Research Fellow program, National Science Foundation projects OCE-1426891, DEB-1616821 and EAR-1151022, the Benioff Ocean Initiative, the Natural Sciences and Engineering Research Council of Canada and the Biodiversity Research Centre at the University of British Columbia. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling (which was responsible for producing CMIP5) and thank the climate modelling groups for making the output of their models available. The US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provided coordinating support and led the development of software infrastructure for CMIP5, in partnership with the Global Organization for Earth System Science Portals.

Reviewer information

Nature thanks Michael Burrows, Mark Payne, Anthony Richardson and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information




M.L.P. conceptualized and administered the project, visualized the data and wrote the original draft of the manuscript. M.L.P., A.M.E., D.J.M. and J.M.S. acquired funding. J.M.S. and M.L.P wrote the software, and performed data curation and formal analysis. M.L.P., J.M.S. and D.J.M. developed the methodology. M.L.P., D.J.M., J.M.S. and J.L.P. reviewed and edited the manuscript.

Corresponding author

Correspondence to Malin L. Pinsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Adjustment to account for the acclimatization temperatures used in laboratory experiments.

a, b, For land (a) and ocean (b) separately, the points show the average summer temperature used for acclimatization calculations (black) at each collection site, ordered from smallest to largest, the experimental acclimatization temperature (grey), the experimentally measured thermal-tolerance maximum (Tmax, blue) and the acclimatization-adjusted thermal-tolerance maximum (Tmax′, purple). c, Tmax′ adjusted with species-specific acclimatization response ratios (ARRs, n = 69 species) is compared against Tmax′ adjusted with ARRs averaged within realms. The grey line is a 1:1 line.

Extended Data Fig. 2 Uncertainty in the location of peaks or valleys in GAMM fits for terrestrial ectotherms.

ac, Clusters of graphs for extreme hot values of body temperatures in thermal refugia (Tb, protected) (a), hot thermal-tolerance limits (Tmax′) (b) and TSM (c) across latitudes. Each cluster of graphs has three parts: (1) the centre graph shows the fitted effect against latitude from a GAMM (dark line), and 50 samples from the fitted smoother (grey lines); (2) the top histogram shows uncertainty in the locations of the peaks (a, b) or valleys (c) detected from 1,000 samples from the fitted smoother; and (3) the right-hand histogram shows uncertainty in the number of peaks or valleys detected. d, Average TSM is plotted against the mid-point of each 10° latitude band. Error bars show s.e.m. Fewer data points create larger error bounds near the equator. n = 299 species.

Extended Data Fig. 3 Effects of alternative emission scenarios and acclimatization on TSMs for the end of the twenty-first century (2081–2100).

a, Projected extreme hot hourly air- or water-surface temperatures from RCP8.5 or RCP2.6 scenarios. Shaded regions show ±1 s.d. n = 1,454 (terrestrial), 689,769 (ocean RCP8.5) or 689,381 (ocean RCP2.6) grid cells. b, Future TSMs without acclimatization. c, Future TSMs with acclimatization. Shaded ribbons show ± 1 s.e. from GAMM fits (b, c). n = 382 species for GAMM fits (b, c).

Extended Data Fig. 4 Alternative approaches to TSM calculations.

a, b, Warm TSMs across latitudes for terrestrial (a) and marine (b) species with alternative temperature calculations (annual average, summer average, warmest month and warmest hour). Physiological tolerance measurements were from acute laboratory exposures (minutes to hours), and acute environmental temperature extremes are therefore arguably most-appropriate for calculating TSM. TSMs from the most-acute temporal scale (hours) revealed a different latitudinal pattern than from the more-aggregated scales, in part because they better capture short-duration thermal extremes. However, in all calculations marine species had narrower TSMs. c, d, Warm TSM calculations for marine species (c) or for terrestrial species (d), with (solid line) or without (dashed line) accounting for behavioural thermoregulation. The latter case is appropriate if behavioural thermoregulation is not possible (for example, thermal refugia are not accessible). Negative thermal safety on land indicates that these habitats are not habitable during midday heat for durations that bring body temperatures close to equilibrium. Note that calculations in a and b do not account for acclimatization or behavioural thermoregulation, to enable clear comparison across timescales. Calculations in c and d include acclimatization to summer temperatures. In all plots, shaded ribbons show ±s.e. from GAMM fits. n = 387 (warmest hour, no marine thermoregulation, or exposed or full sun) or 390 (warmest month, summer average or annual average) species for GAMM fits.

Extended Data Fig. 5 Relationship between physiological maximum (Tmax) and optimum (Topt) temperature across species.

Data are shown from studies15,26,90 that measured Tmax and Topt across species of phytoplankton, insects and lizards. The line is from a linear model with Tmax as the response variable and Topt as the explanatory term (linear regression r2 = 0.77, F = 1,036 with 1 and 310 degrees of freedom, two-sided P < 10−15 with no corrections for multiple comparisons, n = 312 species). All data are plotted in transparent grey so that overlapping data points appear as darker circles. The dashed line is a 1:1 relationship.

Extended Data Table 1 Thermal-tolerance maximums (Tmax) were compiled from 406 species in 15 classes
Extended Data Table 2 Statistical model results for maximum thermal-tolerance limits (Tmax′), extreme body temperatures (Tb, protected) and TSM of marine and terrestrial ectothermic animals
Extended Data Table 3 Marine behavioural thermoregulation adjustments
Extended Data Table 4 Synthesis of range contraction prevalence in multi-species studies

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pinsky, M.L., Eikeset, A.M., McCauley, D.J. et al. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing