Letter | Published:

Ultrafast spin-lasers


Lasers have both ubiquitous applications and roles as model systems in which non-equilibrium and cooperative phenomena can be elucidated1. The introduction of novel concepts in laser operation thus has potential to lead to both new applications and fundamental insights2. Spintronics3, in which both the spin and the charge of the electron are used, has led to the development of spin-lasers, in which charge-carrier spin and photon spin are exploited. Here we show experimentally that the coupling between carrier spin and light polarization in common semiconductor lasers can enable room-temperature modulation frequencies above 200 gigahertz, exceeding by nearly an order of magnitude the best conventional semiconductor lasers. Surprisingly, this ultrafast operation of the resultant spin-laser relies on a short carrier spin relaxation time and a large anisotropy of the refractive index, both of which are commonly viewed as detrimental in spintronics3 and conventional lasers4. Our results overcome the key speed limitations of conventional directly modulated lasers and offer a prospect for the next generation of low-energy ultrafast optical communication.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data sets generated and analysed in this work are available from the corresponding author on reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    DeGiorgio, V. & Scully, M. O. Analogy between the laser threshold region and a second-order phase transition. Phys. Rev. A 2, 1170–1177 (1970).

  2. 2.

    Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

  3. 3.

    Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

  4. 4.

    Michalzik, R. (ed.) VCSELs — Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Springer, Berlin, 2013).

  5. 5.

    Hecht, J. The bandwidth bottleneck. Nature 536, 139–142 (2016).

  6. 6.

    Lee, J., Oszwałdowski, R., Gøthgen, C. & Žutić, I. Mapping between quantum dot and quantum well lasers: from conventional to spin lasers. Phys. Rev. B 85, 045314 (2012).

  7. 7.

    Haghighi, N., Larisch, G., Rosales, R., Zorn, M. & Lott, J. A. 35 GHz bandwidth with directly current modulated 980 nm oxide aperture single cavity VCSELs. In 2018 IEEE Int. Semiconductor Laser Conf. (ISLC) https://doi.org/10.1109/ISLC.2018.8516258 (2018).

  8. 8.

    Fryslie, S. T. M. et al. Modulation of coherently coupled phased photonic crystal vertical cavity laser arrays. IEEE J. Sel. Top. Quantum Electron. 23, 1–9 (2017).

  9. 9.

    Altug, H., Englund, D. & Vučković, J. Ultrafast photonic crystal nanocavity laser. Nat. Phys. 2, 484–488 (2006).

  10. 10.

    Hallstein, S. et al. Manifestation of coherent spin precession in stimulated semiconductor emission dynamics. Phys. Rev. B 56, R7076(R) (1997).

  11. 11.

    Holub, M., Shin, J., Saha, D. & Bhattacharya, P. Electrical spin injection and threshold reduction in a semiconductor laser. Phys. Rev. Lett. 98, 146603 (2007).

  12. 12.

    Žutić, I. & Faria, P. E. Jr Semiconductor lasers: taken for a spin. Nat. Nanotechnol. 9, 750–752 (2014).

  13. 13.

    Chen, J.-Y., Wong, T.-M., Chang, C.-W., Dong, C.-Y. & Chen, Y.-F. Self-polarized spin-nanolasers. Nat. Nanotechnol. 9, 845–850 (2014).

  14. 14.

    Lindemann, M., Pusch, T., Michalzik, R., Gerhardt, N. C. & Hofmann, M. R. Frequency tuning of polarization oscillations: toward high-speed spin-lasers. Appl. Phys. Lett. 108, 042404 (2016).

  15. 15.

    Torre, M. S. et al. High frequency continuous birefringence-induced oscillations in spin-polarized vertical-cavity surface-emitting lasers. Opt. Lett. 42, 1628–1631 (2017).

  16. 16.

    Nishizawa, N., Nishibayashi, K. & Munekata, H. Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes. Proc. Natl Acad. Sci. USA 114, 1783–1788 (2017).

  17. 17.

    Seifert, T. et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photon. 10, 483–488 (2016).

  18. 18.

    Faist, J. Quantum Cascade Lasers (Oxford Univ. Press, Oxford, 2013).

  19. 19.

    Frougier, J. et al. Accurate measurement of the residual birefringence in VECSEL: towards understanding of the polarization behavior under spin-polarized pumping. Opt. Express 23, 9573–9588 (2015).

  20. 20.

    Alouini, M. et al. VSPIN: a new model relying on the vectorial description of the laser field for predicting the polarization dynamics of spin-injected V(e)CSELs. Opt. Express 26, 6739–6757 (2018).

  21. 21.

    Baili, G. et al. Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations. Opt. Lett. 34, 3421–3423 (2009).

  22. 22.

    Faria, P. E. Jr et al. Toward high-frequency operation of spin lasers. Phys. Rev. B 92, 075311 (2015).

  23. 23.

    Jansen van Doorn, A., van Exter, M. & Woerdman, J. Tailoring the birefringence in a vertical cavity semiconductor laser. Appl. Phys. Lett. 69, 3635–3637 (1996).

  24. 24.

    Pusch, T. et al. Monolithic vertical-cavity surface-emitting laser with thermally tunable birefringence. Appl. Phys. Lett. 110, 151106 (2017).

  25. 25.

    Yokota, N., Nisaka, K., Yasaka, H. & Ikeda, K. High-speed modulation of 1.55-μm VCSELs with spin polarization modulation. In Conf. Lasers and Electro-Optics https://doi.org/10.1364/CLEO_SI.2018.STu3Q.2 (Optical Society of America, 2018).

  26. 26.

    Pusch, T., Lindemann, M., Gerhardt, N. C., Hofmann, M. R. & Michalzik, R. Vertical-cavity surface-emitting lasers with birefringence above 250 GHz. Electron. Lett. 51, 1600–1602 (2015).

  27. 27.

    Iba, S., Koh, S., Ikeda, K. & Kawaguchi, H. Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells. Appl. Phys. Lett. 98, 081113 (2011).

  28. 28.

    Moser, P. et al. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s. Electron. Lett. 48, 1292–1294 (2012).

  29. 29.

    Jagsch, S. T. et al. A quantum optical study of thresholdless lasing features in high-β nitride nanobeam cavities. Nat. Commun. 9, 564 (2018).

  30. 30.

    Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

  31. 31.

    Raddo, T. R., Panajotov, K., Borges, B.-H. V. & Virte, M. Strain induced polarization chaos in a solitary VCSEL. Sci. Rep. 7, 14032 (2017).

  32. 32.

    Bhattacharya, A. et al. Room-temperature spin polariton diode laser. Phys. Rev. Lett. 119, 067701 (2017).

  33. 33.

    Žutić, I., Matos-Abiague, A., Scharf, B., Dery, H. & Belashchenko, K. Proximitized materials. Mater. Today 22, 85–107 (2019).

  34. 34.

    Gordón, C., Guzmán, R., Corral, V., Lo, M. C. & Carpintero, G. On-chip multiple colliding pulse mode-locked semiconductor laser. J. Lightwave Technol. 34, 4722–4728 (2016).

  35. 35.

    Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nat. Photon. 7, 977–981 (2013).

  36. 36.

    Paiella, R. et al. High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers. Appl. Phys. Lett. 79, 2526–2528 (2001).

  37. 37.

    Li, M. et al. Birefringence controlled room-temperature picosecond spin dynamics close to the threshold of vertical-cavity surface-emitting laser devices. Appl. Phys. Lett. 97, 191114 (2010).

  38. 38.

    Gerhardt, N. C. et al. Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 99, 151107 (2011).

  39. 39.

    Al-Seyab, R., Alexandropoulos, D., Henning, I. & Adams, M. Instabilities in spin-polarized vertical-cavity surface-emitting lasers. IEEE Photon. J. 3, 799–809 (2011).

  40. 40.

    Höpfner, H., Lindemann, M., Gerhardt, N. C. & Hofmann, M. R. Controlled switching of ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 104, 022409 (2014).

  41. 41.

    Nishizawa, N., Nishibayashi, K. & Munekata, H. A spin light emitting diode incorporating ability of electrical helicity switching. Appl. Phys. Lett. 104, 111102 (2014).

  42. 42.

    Hsu, F.-K., Xie, W., Lee, Y.-S., Lin, S.-D. & Lai, C.-W. Ultrafast spin-polarized lasing in a highly photoexcited semiconductor microcavity at room temperature. Phys. Rev. B 91, 195312 (2015).

  43. 43.

    Rudolph, J., Hägele, D., Gibbs, H., Khitrova, G. & Oestreich, M. Laser threshold reduction in a spintronic device. Appl. Phys. Lett. 82, 4516–4518 (2003).

  44. 44.

    Rudolph, J., Döhrmann, S., Hägele, D., Oestreich, M. & Stolz, W. Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spin-polarized electrons. Appl. Phys. Lett. 87, 241117 (2005).

  45. 45.

    Gøthgen, C., Oszwałdowski, R., Petrou, A. & Žutić, I. Analytical model of spin-polarized semiconductor lasers. Appl. Phys. Lett. 93, 042513 (2008).

  46. 46.

    Vurgaftman, I., Holub, M., Jonker, B. & Meyer, J. Estimating threshold reduction for spin-injected semiconductor lasers. Appl. Phys. Lett. 93, 031102 (2008).

  47. 47.

    Basu, D., Saha, D. & Bhattacharya, P. Optical polarization modulation and gain anisotropy in an electrically injected spin laser. Phys. Rev. Lett. 102, 093904 (2009).

  48. 48.

    Holub, M. & Jonker, B. Threshold current reduction in spin-polarized lasers: role of strain and valence-band mixing. Phys. Rev. B 83, 125309 (2011).

  49. 49.

    Schires, K. et al. Optically-pumped dilute nitride spin-VCSEL. Opt. Express 20, 3550–3555 (2012).

  50. 50.

    Lee, J., Bearden, S., Wasner, E. & Žutić, I. Spin-lasers: from threshold reduction to large-signal analysis. Appl. Phys. Lett. 105, 042411 (2014).

  51. 51.

    Faria, P. E. Jr, Xu, G., Chen, Y.-F., Sipahi, G. M. & Žutić, I. Wurtzite spin lasers. Phys. Rev. B 95, 115301 (2017).

  52. 52.

    Basu, D. et al. Electrically injected InAs/GaAs quantum dot spin laser operating at 200 K. Appl. Phys. Lett. 92, 091119 (2008).

  53. 53.

    Ando, H., Sogawa, T. & Gotoh, H. Photon-spin controlled lasing oscillation in surface-emitting lasers. Appl. Phys. Lett. 73, 566–568 (1998).

  54. 54.

    Hövel, S. et al. Spin controlled optically pumped vertical cavity surface emitting laser. Electron. Lett. 41, 251–253 (2005).

  55. 55.

    Gerhardt, N. C. et al. Enhancement of spin information with vertical cavity surface emitting lasers. Electron. Lett. 42, 88–89 (2006).

  56. 56.

    Hövel, S. et al. Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 92, 041118 (2008).

  57. 57.

    Fujino, H., Koh, S., Iba, S., Fujimoto, T. & Kawaguchi, H. Circularly polarized lasing in a (110)-oriented quantum well vertical-cavity surface-emitting laser under optical spin injection. Appl. Phys. Lett. 94, 131108 (2009).

  58. 58.

    Frougier, J. et al. Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers. Appl. Phys. Lett. 103, 252402 (2013).

  59. 59.

    Alharthi, S. S. et al. Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection. Appl. Phys. Lett. 105, 181106 (2014).

  60. 60.

    Fördös, T. et al. Eigenmodes of spin vertical-cavity surface-emitting lasers with local linear birefringence and gain dichroism. Phys. Rev. A 96, 043828 (2017).

  61. 61.

    Fördös, T. et al. Mueller matrix ellipsometric study of multilayer spin-VCSEL structures with local optical anisotropy. Appl. Phys. Lett. 112, 221106 (2018).

  62. 62.

    Alharthi, S. S. et al. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser. Appl. Phys. Lett. 106, 021117 (2015).

  63. 63.

    Lee, J., Falls, W., Oszwałdowski, R. & Žutić, I. Spin modulation in semiconductor lasers. Appl. Phys. Lett. 97, 041116 (2010).

  64. 64.

    Saha, D., Basu, D. & Bhattacharya, P. High-frequency dynamics of spin-polarized carriers and photons in a laser. Phys. Rev. B 82, 205309 (2010).

  65. 65.

    Wasner, E., Bearden, S., Lee, J. & Žutić, I. Digital operation and eye diagrams in spin-lasers. Appl. Phys. Lett. 107, 082406 (2015).

  66. 66.

    Boéris, G., Lee, J., Výborný, K. & Žutić, I. Tailoring chirp in spin-lasers. Appl. Phys. Lett. 100, 121111 (2012).

  67. 67.

    San Miguel, M., Feng, Q. & Moloney, J. Light-polarization dynamics in surface-emitting semiconductor lasers. Phys. Rev. A 52, 1728–1739 (1995).

  68. 68.

    Gahl, A., Balle, S. & San Miguel, M. Polarization dynamics of optically pumped VCSELs. IEEE J. Quantum Electron. 35, 342–351 (1999).

  69. 69.

    van Exter, M., Willemsen, M. & Woerdman, J. Polarization fluctuations in vertical-cavity semiconductor lasers. Phys. Rev. A 58, 4191–4205 (1998).

  70. 70.

    Ackemann, T. & Sondermann, M. Characteristics of polarization switching from the low to the high frequency mode in vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 78, 3574–3576 (2001).

  71. 71.

    Sondermann, M., Weinkath, M. & Ackemann, T. Polarization switching to the gain disfavored mode in vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 40, 97–104 (2004).

  72. 72.

    Willemsen, M. B., van Exter, M. P. & Woerman, J. P. Anatomy of a polarization switch of a vertical-cavity semiconductor laser. Phys. Rev. Lett. 84, 4337–4340 (2000).

  73. 73.

    Blansett, E. L. et al. Ultrafast polarization dynamics and noise in pulsed vertical-cavity surface-emitting lasers. Opt. Express 9, 312–318 (2001).

  74. 74.

    Virte, M., Panajotov, K., Thienpont, H. & Sciamanna, M. Deterministic polarization chaos from a laser diode. Nat. Photon. 7, 60–65 (2013).

  75. 75.

    Panajotov, K. et al. Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 77, 1590–1592 (2000).

  76. 76.

    Ostermann, J., Debernardi, P., Kroner, A. & Michalzik, R. Polarization-controlled surface grating VCSELs under externally induced anisotropic strain. IEEE Photon. Technol. Lett. 19, 1301–1303 (2007).

  77. 77.

    Ostermann, J. M. & Michalzik, R. in VCSELs (ed. Michalzik, R.) Ch. 5, 147–179 (Springer, Berlin, 2013).

  78. 78.

    Long, C. M. et al. Polarization mode control of long-wavelength VCSELs by intracavity patterning. Opt. Express 24, 9715–9722 (2016).

  79. 79.

    Kawaguchi, H. Bistable laser diodes and their applications: state of the art. IEEE J. Sel. Top. Quantum Electron. 3, 1254–1270 (1997).

  80. 80.

    Bretenaker, F. & Floch, A. L. The dynamics of spatially-resolved laser eigenstates. IEEE J. Quantum Electron. 26, 1451–1454 (1990).

  81. 81.

    Alouini, M. et al. Offset phase locking of Er,Yb:glass laser eigenstates for RF photonics applications. IEEE Photon. Technol. Lett. 13, 367–369 (2001).

  82. 82.

    Carpintero, G. et al. Wireless data transmission at terahertz carrier waves generated from a hybrid InP-polymer dual tunable DBR laser photonic integrated circuit. Sci. Rep. 8, 3018 (2018).

  83. 83.

    Badr, N., White, I. H., Tan, M. R. T., Houng, Y. M. & Wang, S. Y. Enhanced polarisation self-switching in a vertical-cavity surface-emitting laser by gain saturation of transverse modes. Electron. Lett. 30, 1227–1229 (1994).

  84. 84.

    Dems, M., Czyszanowski, T., Thienpont, H. & Panajotov, K. Highly birefringent and dichroic photonic crystal VCSEL design. Opt. Commun. 281, 3149–3152 (2008).

  85. 85.

    Pusch, T. et al. Birefringence tuning of VCSELs. Proc. SPIE 9892, 989222 (2016).

  86. 86.

    Berry, H. G., Gabrielse, G. & Livingston, A. E. Measurement of the Stokes parameters of light. Appl. Opt. 16, 3200–3205 (1977).

  87. 87.

    Jackson, J. D. Classical Electrodynamics (Wiley, New York, 1999).

Download references


For supporting this work the authors thank the German Research Foundation (grant nos GE1231/2-2 and MI607/9-2), the US National Science Foundation (grant nos ECCS-1508873 and ECCS-1810266) and the US Office of Naval Research (grant no. 000141712793).

Reviewer information

Nature thanks Daniel Dolfi, Hiro Munekata and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

N.C.G. and M.R.H. conceived the project idea. M.L. planned and conducted the experiments and experimental analysis, and characterized the measurement system. T.P. developed the advanced laser mount and performed the device processing. R.M. devised methods of birefringence tuning of VCSELs and was involved in the device optimization. G.X. and I.Ž. developed the generalized model for simulation. M.L., G.X. and N.C.G. performed the numerical simulations. M.L., G.X., I.Ž. and N.C.G. wrote the manuscript. All authors discussed the results and revised the manuscript.

Competing interests

The authors declare no competing interests.

Correspondence to Markus Lindemann or Nils C. Gerhardt.

Extended data figures and tables

  1. Extended Data Fig. 1 Strain-dependent behaviour.

    a, Strain Δl/l and the resulting mode splitting Δf. Points show determined values, lines are their direct connections and are included for improved visualization. b, Spectrum without applied external strain. The vertical lines mark the maxima of the two orthogonal modes. The arrow indicates the resulting Δf. The solid line is a smoothed curve through the raw data (points). c, Corresponding polarization oscillation in the circular polarization degree PC with a frequency of 9.2 GHz. The solid line is a smoothed curve through the raw data (points).

  2. Extended Data Fig. 2 Acquisition timing.

    Shown is the trace of the intensity obtained with the streak camera for a long measurement window (grey) and the trace of the circular polarization degree for a short measurement window with higher temporal resolution (black). The positioning of the shorter measurement window for acquisition of fast polarization oscillations over the full scale of the dynamic process caused by the spin injection pulse is evident.

  3. Extended Data Fig. 3 Modulation efficiency.

    The figure shows how polarization oscillation amplitudes depend on the birefringence-induced mode splitting. Grey trace, calculated amplitude APO,d derived from the spectrum by relating the intensities of lasing and non-lasing modes. Black trace, actual polarization oscillation amplitude APO,s from the temporal traces. Points mark raw data, lines show exponential fits. For splittings between 130 and 200 GHz no data are shown as the amplitude is quite close to the noise level of the streak camera. The data points in Fig. 2c were obtained by Fourier transform from these data. At 214 GHz the streak camera was used in another mode of measurement offering a better signal-to-noise ratio. For constant applied spin-injection, the resulting polarization oscillation amplitude and thus the modulation efficiency decreases with increasing mode splitting.

  4. Extended Data Fig. 4 Dichroism dependent polarization modulation response curves.

    Plots show simulated modulation (Mod.) response as a function of polarization modulation frequency for different values of dichroism γa (see key). The dashed green line marks the −3dB level as a measure for the lower limit of the desired modulation response.

  5. Extended Data Fig. 5 Experimental polarization modulation and its birefringence dependence.

    a, Results for several values of the birefringence-induced mode splitting, Δf (see key). Points mark raw data, lines are smoothed data. b, Numerical verification of results in a using the parameter set obtained in this work for the appropriate values of γp (see key).

  6. Extended Data Table 1 List of symbols used in the simulations
  7. Extended Data Table 2 Spin-flip model parameters for Fig. 2
  8. Extended Data Table 3 Spin-flip model parameters for Figs. 3a, b, 4a, b
  9. Extended Data Table 4 Spin-flip model parameters for Fig. 3c, d
  10. Extended Data Table 5 Spin-flip model parameters for Extended Data Fig. 4

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Fig. 1: Birefringent VCSEL and measurement set-up.
Fig. 2: Polarization behaviour of spin-VCSELs.
Fig. 3: Advantage of polarization modulation in dynamic performance.
Fig. 4: Influences on modulation bandwidth.
Extended Data Fig. 1: Strain-dependent behaviour.
Extended Data Fig. 2: Acquisition timing.
Extended Data Fig. 3: Modulation efficiency.
Extended Data Fig. 4: Dichroism dependent polarization modulation response curves.
Extended Data Fig. 5: Experimental polarization modulation and its birefringence dependence.


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.