Ultrafast spin-lasers


Lasers have both ubiquitous applications and roles as model systems in which non-equilibrium and cooperative phenomena can be elucidated1. The introduction of novel concepts in laser operation thus has potential to lead to both new applications and fundamental insights2. Spintronics3, in which both the spin and the charge of the electron are used, has led to the development of spin-lasers, in which charge-carrier spin and photon spin are exploited. Here we show experimentally that the coupling between carrier spin and light polarization in common semiconductor lasers can enable room-temperature modulation frequencies above 200 gigahertz, exceeding by nearly an order of magnitude the best conventional semiconductor lasers. Surprisingly, this ultrafast operation of the resultant spin-laser relies on a short carrier spin relaxation time and a large anisotropy of the refractive index, both of which are commonly viewed as detrimental in spintronics3 and conventional lasers4. Our results overcome the key speed limitations of conventional directly modulated lasers and offer a prospect for the next generation of low-energy ultrafast optical communication.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Birefringent VCSEL and measurement set-up.
Fig. 2: Polarization behaviour of spin-VCSELs.
Fig. 3: Advantage of polarization modulation in dynamic performance.
Fig. 4: Influences on modulation bandwidth.

Data availability

The data sets generated and analysed in this work are available from the corresponding author on reasonable request.


  1. 1.

    DeGiorgio, V. & Scully, M. O. Analogy between the laser threshold region and a second-order phase transition. Phys. Rev. A 2, 1170–1177 (1970).

    ADS  Google Scholar 

  2. 2.

    Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    PubMed  Google Scholar 

  3. 3.

    Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    ADS  Google Scholar 

  4. 4.

    Michalzik, R. (ed.) VCSELs — Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Springer, Berlin, 2013).

    Google Scholar 

  5. 5.

    Hecht, J. The bandwidth bottleneck. Nature 536, 139–142 (2016).

    ADS  CAS  PubMed  Google Scholar 

  6. 6.

    Lee, J., Oszwałdowski, R., Gøthgen, C. & Žutić, I. Mapping between quantum dot and quantum well lasers: from conventional to spin lasers. Phys. Rev. B 85, 045314 (2012).

    ADS  Google Scholar 

  7. 7.

    Haghighi, N., Larisch, G., Rosales, R., Zorn, M. & Lott, J. A. 35 GHz bandwidth with directly current modulated 980 nm oxide aperture single cavity VCSELs. In 2018 IEEE Int. Semiconductor Laser Conf. (ISLC) https://doi.org/10.1109/ISLC.2018.8516258 (2018).

  8. 8.

    Fryslie, S. T. M. et al. Modulation of coherently coupled phased photonic crystal vertical cavity laser arrays. IEEE J. Sel. Top. Quantum Electron. 23, 1–9 (2017).

    Google Scholar 

  9. 9.

    Altug, H., Englund, D. & Vučković, J. Ultrafast photonic crystal nanocavity laser. Nat. Phys. 2, 484–488 (2006).

    CAS  Google Scholar 

  10. 10.

    Hallstein, S. et al. Manifestation of coherent spin precession in stimulated semiconductor emission dynamics. Phys. Rev. B 56, R7076(R) (1997).

    ADS  Google Scholar 

  11. 11.

    Holub, M., Shin, J., Saha, D. & Bhattacharya, P. Electrical spin injection and threshold reduction in a semiconductor laser. Phys. Rev. Lett. 98, 146603 (2007).

    ADS  CAS  PubMed  Google Scholar 

  12. 12.

    Žutić, I. & Faria, P. E. Jr Semiconductor lasers: taken for a spin. Nat. Nanotechnol. 9, 750–752 (2014).

    ADS  PubMed  Google Scholar 

  13. 13.

    Chen, J.-Y., Wong, T.-M., Chang, C.-W., Dong, C.-Y. & Chen, Y.-F. Self-polarized spin-nanolasers. Nat. Nanotechnol. 9, 845–850 (2014).

    ADS  CAS  PubMed  Google Scholar 

  14. 14.

    Lindemann, M., Pusch, T., Michalzik, R., Gerhardt, N. C. & Hofmann, M. R. Frequency tuning of polarization oscillations: toward high-speed spin-lasers. Appl. Phys. Lett. 108, 042404 (2016).

    ADS  Google Scholar 

  15. 15.

    Torre, M. S. et al. High frequency continuous birefringence-induced oscillations in spin-polarized vertical-cavity surface-emitting lasers. Opt. Lett. 42, 1628–1631 (2017).

    ADS  CAS  PubMed  Google Scholar 

  16. 16.

    Nishizawa, N., Nishibayashi, K. & Munekata, H. Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes. Proc. Natl Acad. Sci. USA 114, 1783–1788 (2017).

    ADS  CAS  PubMed  Google Scholar 

  17. 17.

    Seifert, T. et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photon. 10, 483–488 (2016).

    ADS  CAS  Google Scholar 

  18. 18.

    Faist, J. Quantum Cascade Lasers (Oxford Univ. Press, Oxford, 2013).

    Google Scholar 

  19. 19.

    Frougier, J. et al. Accurate measurement of the residual birefringence in VECSEL: towards understanding of the polarization behavior under spin-polarized pumping. Opt. Express 23, 9573–9588 (2015).

    ADS  CAS  PubMed  Google Scholar 

  20. 20.

    Alouini, M. et al. VSPIN: a new model relying on the vectorial description of the laser field for predicting the polarization dynamics of spin-injected V(e)CSELs. Opt. Express 26, 6739–6757 (2018).

    ADS  CAS  PubMed  Google Scholar 

  21. 21.

    Baili, G. et al. Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations. Opt. Lett. 34, 3421–3423 (2009).

    ADS  PubMed  Google Scholar 

  22. 22.

    Faria, P. E. Jr et al. Toward high-frequency operation of spin lasers. Phys. Rev. B 92, 075311 (2015).

    Google Scholar 

  23. 23.

    Jansen van Doorn, A., van Exter, M. & Woerdman, J. Tailoring the birefringence in a vertical cavity semiconductor laser. Appl. Phys. Lett. 69, 3635–3637 (1996).

    ADS  Google Scholar 

  24. 24.

    Pusch, T. et al. Monolithic vertical-cavity surface-emitting laser with thermally tunable birefringence. Appl. Phys. Lett. 110, 151106 (2017).

    ADS  Google Scholar 

  25. 25.

    Yokota, N., Nisaka, K., Yasaka, H. & Ikeda, K. High-speed modulation of 1.55-μm VCSELs with spin polarization modulation. In Conf. Lasers and Electro-Optics https://doi.org/10.1364/CLEO_SI.2018.STu3Q.2 (Optical Society of America, 2018).

  26. 26.

    Pusch, T., Lindemann, M., Gerhardt, N. C., Hofmann, M. R. & Michalzik, R. Vertical-cavity surface-emitting lasers with birefringence above 250 GHz. Electron. Lett. 51, 1600–1602 (2015).

    Google Scholar 

  27. 27.

    Iba, S., Koh, S., Ikeda, K. & Kawaguchi, H. Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells. Appl. Phys. Lett. 98, 081113 (2011).

    ADS  Google Scholar 

  28. 28.

    Moser, P. et al. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s. Electron. Lett. 48, 1292–1294 (2012).

    Google Scholar 

  29. 29.

    Jagsch, S. T. et al. A quantum optical study of thresholdless lasing features in high-β nitride nanobeam cavities. Nat. Commun. 9, 564 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

    ADS  CAS  PubMed  Google Scholar 

  31. 31.

    Raddo, T. R., Panajotov, K., Borges, B.-H. V. & Virte, M. Strain induced polarization chaos in a solitary VCSEL. Sci. Rep. 7, 14032 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Bhattacharya, A. et al. Room-temperature spin polariton diode laser. Phys. Rev. Lett. 119, 067701 (2017).

    ADS  PubMed  Google Scholar 

  33. 33.

    Žutić, I., Matos-Abiague, A., Scharf, B., Dery, H. & Belashchenko, K. Proximitized materials. Mater. Today 22, 85–107 (2019).

    Google Scholar 

  34. 34.

    Gordón, C., Guzmán, R., Corral, V., Lo, M. C. & Carpintero, G. On-chip multiple colliding pulse mode-locked semiconductor laser. J. Lightwave Technol. 34, 4722–4728 (2016).

    ADS  Google Scholar 

  35. 35.

    Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nat. Photon. 7, 977–981 (2013).

    ADS  CAS  Google Scholar 

  36. 36.

    Paiella, R. et al. High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers. Appl. Phys. Lett. 79, 2526–2528 (2001).

    ADS  CAS  Google Scholar 

  37. 37.

    Li, M. et al. Birefringence controlled room-temperature picosecond spin dynamics close to the threshold of vertical-cavity surface-emitting laser devices. Appl. Phys. Lett. 97, 191114 (2010).

    ADS  Google Scholar 

  38. 38.

    Gerhardt, N. C. et al. Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 99, 151107 (2011).

    ADS  Google Scholar 

  39. 39.

    Al-Seyab, R., Alexandropoulos, D., Henning, I. & Adams, M. Instabilities in spin-polarized vertical-cavity surface-emitting lasers. IEEE Photon. J. 3, 799–809 (2011).

    ADS  Google Scholar 

  40. 40.

    Höpfner, H., Lindemann, M., Gerhardt, N. C. & Hofmann, M. R. Controlled switching of ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 104, 022409 (2014).

    ADS  Google Scholar 

  41. 41.

    Nishizawa, N., Nishibayashi, K. & Munekata, H. A spin light emitting diode incorporating ability of electrical helicity switching. Appl. Phys. Lett. 104, 111102 (2014).

    ADS  Google Scholar 

  42. 42.

    Hsu, F.-K., Xie, W., Lee, Y.-S., Lin, S.-D. & Lai, C.-W. Ultrafast spin-polarized lasing in a highly photoexcited semiconductor microcavity at room temperature. Phys. Rev. B 91, 195312 (2015).

    ADS  Google Scholar 

  43. 43.

    Rudolph, J., Hägele, D., Gibbs, H., Khitrova, G. & Oestreich, M. Laser threshold reduction in a spintronic device. Appl. Phys. Lett. 82, 4516–4518 (2003).

    ADS  CAS  Google Scholar 

  44. 44.

    Rudolph, J., Döhrmann, S., Hägele, D., Oestreich, M. & Stolz, W. Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spin-polarized electrons. Appl. Phys. Lett. 87, 241117 (2005).

    ADS  Google Scholar 

  45. 45.

    Gøthgen, C., Oszwałdowski, R., Petrou, A. & Žutić, I. Analytical model of spin-polarized semiconductor lasers. Appl. Phys. Lett. 93, 042513 (2008).

    ADS  Google Scholar 

  46. 46.

    Vurgaftman, I., Holub, M., Jonker, B. & Meyer, J. Estimating threshold reduction for spin-injected semiconductor lasers. Appl. Phys. Lett. 93, 031102 (2008).

    ADS  Google Scholar 

  47. 47.

    Basu, D., Saha, D. & Bhattacharya, P. Optical polarization modulation and gain anisotropy in an electrically injected spin laser. Phys. Rev. Lett. 102, 093904 (2009).

    ADS  CAS  PubMed  Google Scholar 

  48. 48.

    Holub, M. & Jonker, B. Threshold current reduction in spin-polarized lasers: role of strain and valence-band mixing. Phys. Rev. B 83, 125309 (2011).

    ADS  Google Scholar 

  49. 49.

    Schires, K. et al. Optically-pumped dilute nitride spin-VCSEL. Opt. Express 20, 3550–3555 (2012).

    ADS  CAS  PubMed  Google Scholar 

  50. 50.

    Lee, J., Bearden, S., Wasner, E. & Žutić, I. Spin-lasers: from threshold reduction to large-signal analysis. Appl. Phys. Lett. 105, 042411 (2014).

    ADS  Google Scholar 

  51. 51.

    Faria, P. E. Jr, Xu, G., Chen, Y.-F., Sipahi, G. M. & Žutić, I. Wurtzite spin lasers. Phys. Rev. B 95, 115301 (2017).

    ADS  Google Scholar 

  52. 52.

    Basu, D. et al. Electrically injected InAs/GaAs quantum dot spin laser operating at 200 K. Appl. Phys. Lett. 92, 091119 (2008).

    ADS  Google Scholar 

  53. 53.

    Ando, H., Sogawa, T. & Gotoh, H. Photon-spin controlled lasing oscillation in surface-emitting lasers. Appl. Phys. Lett. 73, 566–568 (1998).

    ADS  CAS  Google Scholar 

  54. 54.

    Hövel, S. et al. Spin controlled optically pumped vertical cavity surface emitting laser. Electron. Lett. 41, 251–253 (2005).

    Google Scholar 

  55. 55.

    Gerhardt, N. C. et al. Enhancement of spin information with vertical cavity surface emitting lasers. Electron. Lett. 42, 88–89 (2006).

    Google Scholar 

  56. 56.

    Hövel, S. et al. Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 92, 041118 (2008).

    ADS  Google Scholar 

  57. 57.

    Fujino, H., Koh, S., Iba, S., Fujimoto, T. & Kawaguchi, H. Circularly polarized lasing in a (110)-oriented quantum well vertical-cavity surface-emitting laser under optical spin injection. Appl. Phys. Lett. 94, 131108 (2009).

    ADS  Google Scholar 

  58. 58.

    Frougier, J. et al. Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers. Appl. Phys. Lett. 103, 252402 (2013).

    ADS  Google Scholar 

  59. 59.

    Alharthi, S. S. et al. Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection. Appl. Phys. Lett. 105, 181106 (2014).

    ADS  Google Scholar 

  60. 60.

    Fördös, T. et al. Eigenmodes of spin vertical-cavity surface-emitting lasers with local linear birefringence and gain dichroism. Phys. Rev. A 96, 043828 (2017).

    ADS  Google Scholar 

  61. 61.

    Fördös, T. et al. Mueller matrix ellipsometric study of multilayer spin-VCSEL structures with local optical anisotropy. Appl. Phys. Lett. 112, 221106 (2018).

    ADS  Google Scholar 

  62. 62.

    Alharthi, S. S. et al. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser. Appl. Phys. Lett. 106, 021117 (2015).

    ADS  Google Scholar 

  63. 63.

    Lee, J., Falls, W., Oszwałdowski, R. & Žutić, I. Spin modulation in semiconductor lasers. Appl. Phys. Lett. 97, 041116 (2010).

    ADS  Google Scholar 

  64. 64.

    Saha, D., Basu, D. & Bhattacharya, P. High-frequency dynamics of spin-polarized carriers and photons in a laser. Phys. Rev. B 82, 205309 (2010).

    ADS  Google Scholar 

  65. 65.

    Wasner, E., Bearden, S., Lee, J. & Žutić, I. Digital operation and eye diagrams in spin-lasers. Appl. Phys. Lett. 107, 082406 (2015).

    ADS  Google Scholar 

  66. 66.

    Boéris, G., Lee, J., Výborný, K. & Žutić, I. Tailoring chirp in spin-lasers. Appl. Phys. Lett. 100, 121111 (2012).

    ADS  Google Scholar 

  67. 67.

    San Miguel, M., Feng, Q. & Moloney, J. Light-polarization dynamics in surface-emitting semiconductor lasers. Phys. Rev. A 52, 1728–1739 (1995).

    ADS  CAS  PubMed  Google Scholar 

  68. 68.

    Gahl, A., Balle, S. & San Miguel, M. Polarization dynamics of optically pumped VCSELs. IEEE J. Quantum Electron. 35, 342–351 (1999).

    ADS  CAS  Google Scholar 

  69. 69.

    van Exter, M., Willemsen, M. & Woerdman, J. Polarization fluctuations in vertical-cavity semiconductor lasers. Phys. Rev. A 58, 4191–4205 (1998).

    ADS  Google Scholar 

  70. 70.

    Ackemann, T. & Sondermann, M. Characteristics of polarization switching from the low to the high frequency mode in vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 78, 3574–3576 (2001).

    ADS  CAS  Google Scholar 

  71. 71.

    Sondermann, M., Weinkath, M. & Ackemann, T. Polarization switching to the gain disfavored mode in vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 40, 97–104 (2004).

    ADS  CAS  Google Scholar 

  72. 72.

    Willemsen, M. B., van Exter, M. P. & Woerman, J. P. Anatomy of a polarization switch of a vertical-cavity semiconductor laser. Phys. Rev. Lett. 84, 4337–4340 (2000).

    ADS  CAS  PubMed  Google Scholar 

  73. 73.

    Blansett, E. L. et al. Ultrafast polarization dynamics and noise in pulsed vertical-cavity surface-emitting lasers. Opt. Express 9, 312–318 (2001).

    ADS  CAS  PubMed  Google Scholar 

  74. 74.

    Virte, M., Panajotov, K., Thienpont, H. & Sciamanna, M. Deterministic polarization chaos from a laser diode. Nat. Photon. 7, 60–65 (2013).

    ADS  CAS  Google Scholar 

  75. 75.

    Panajotov, K. et al. Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 77, 1590–1592 (2000).

    ADS  CAS  Google Scholar 

  76. 76.

    Ostermann, J., Debernardi, P., Kroner, A. & Michalzik, R. Polarization-controlled surface grating VCSELs under externally induced anisotropic strain. IEEE Photon. Technol. Lett. 19, 1301–1303 (2007).

    Google Scholar 

  77. 77.

    Ostermann, J. M. & Michalzik, R. in VCSELs (ed. Michalzik, R.) Ch. 5, 147–179 (Springer, Berlin, 2013).

  78. 78.

    Long, C. M. et al. Polarization mode control of long-wavelength VCSELs by intracavity patterning. Opt. Express 24, 9715–9722 (2016).

    ADS  CAS  PubMed  Google Scholar 

  79. 79.

    Kawaguchi, H. Bistable laser diodes and their applications: state of the art. IEEE J. Sel. Top. Quantum Electron. 3, 1254–1270 (1997).

    ADS  Google Scholar 

  80. 80.

    Bretenaker, F. & Floch, A. L. The dynamics of spatially-resolved laser eigenstates. IEEE J. Quantum Electron. 26, 1451–1454 (1990).

    ADS  CAS  Google Scholar 

  81. 81.

    Alouini, M. et al. Offset phase locking of Er,Yb:glass laser eigenstates for RF photonics applications. IEEE Photon. Technol. Lett. 13, 367–369 (2001).

    Google Scholar 

  82. 82.

    Carpintero, G. et al. Wireless data transmission at terahertz carrier waves generated from a hybrid InP-polymer dual tunable DBR laser photonic integrated circuit. Sci. Rep. 8, 3018 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Badr, N., White, I. H., Tan, M. R. T., Houng, Y. M. & Wang, S. Y. Enhanced polarisation self-switching in a vertical-cavity surface-emitting laser by gain saturation of transverse modes. Electron. Lett. 30, 1227–1229 (1994).

    Google Scholar 

  84. 84.

    Dems, M., Czyszanowski, T., Thienpont, H. & Panajotov, K. Highly birefringent and dichroic photonic crystal VCSEL design. Opt. Commun. 281, 3149–3152 (2008).

    ADS  CAS  Google Scholar 

  85. 85.

    Pusch, T. et al. Birefringence tuning of VCSELs. Proc. SPIE 9892, 989222 (2016).

    Google Scholar 

  86. 86.

    Berry, H. G., Gabrielse, G. & Livingston, A. E. Measurement of the Stokes parameters of light. Appl. Opt. 16, 3200–3205 (1977).

    ADS  CAS  PubMed  Google Scholar 

  87. 87.

    Jackson, J. D. Classical Electrodynamics (Wiley, New York, 1999).

Download references


For supporting this work the authors thank the German Research Foundation (grant nos GE1231/2-2 and MI607/9-2), the US National Science Foundation (grant nos ECCS-1508873 and ECCS-1810266) and the US Office of Naval Research (grant no. 000141712793).

Reviewer information

Nature thanks Daniel Dolfi, Hiro Munekata and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information




N.C.G. and M.R.H. conceived the project idea. M.L. planned and conducted the experiments and experimental analysis, and characterized the measurement system. T.P. developed the advanced laser mount and performed the device processing. R.M. devised methods of birefringence tuning of VCSELs and was involved in the device optimization. G.X. and I.Ž. developed the generalized model for simulation. M.L., G.X. and N.C.G. performed the numerical simulations. M.L., G.X., I.Ž. and N.C.G. wrote the manuscript. All authors discussed the results and revised the manuscript.

Corresponding authors

Correspondence to Markus Lindemann or Nils C. Gerhardt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Strain-dependent behaviour.

a, Strain Δl/l and the resulting mode splitting Δf. Points show determined values, lines are their direct connections and are included for improved visualization. b, Spectrum without applied external strain. The vertical lines mark the maxima of the two orthogonal modes. The arrow indicates the resulting Δf. The solid line is a smoothed curve through the raw data (points). c, Corresponding polarization oscillation in the circular polarization degree PC with a frequency of 9.2 GHz. The solid line is a smoothed curve through the raw data (points).

Extended Data Fig. 2 Acquisition timing.

Shown is the trace of the intensity obtained with the streak camera for a long measurement window (grey) and the trace of the circular polarization degree for a short measurement window with higher temporal resolution (black). The positioning of the shorter measurement window for acquisition of fast polarization oscillations over the full scale of the dynamic process caused by the spin injection pulse is evident.

Extended Data Fig. 3 Modulation efficiency.

The figure shows how polarization oscillation amplitudes depend on the birefringence-induced mode splitting. Grey trace, calculated amplitude APO,d derived from the spectrum by relating the intensities of lasing and non-lasing modes. Black trace, actual polarization oscillation amplitude APO,s from the temporal traces. Points mark raw data, lines show exponential fits. For splittings between 130 and 200 GHz no data are shown as the amplitude is quite close to the noise level of the streak camera. The data points in Fig. 2c were obtained by Fourier transform from these data. At 214 GHz the streak camera was used in another mode of measurement offering a better signal-to-noise ratio. For constant applied spin-injection, the resulting polarization oscillation amplitude and thus the modulation efficiency decreases with increasing mode splitting.

Extended Data Fig. 4 Dichroism dependent polarization modulation response curves.

Plots show simulated modulation (Mod.) response as a function of polarization modulation frequency for different values of dichroism γa (see key). The dashed green line marks the −3dB level as a measure for the lower limit of the desired modulation response.

Extended Data Fig. 5 Experimental polarization modulation and its birefringence dependence.

a, Results for several values of the birefringence-induced mode splitting, Δf (see key). Points mark raw data, lines are smoothed data. b, Numerical verification of results in a using the parameter set obtained in this work for the appropriate values of γp (see key).

Extended Data Table 1 List of symbols used in the simulations
Extended Data Table 2 Spin-flip model parameters for Fig. 2
Extended Data Table 3 Spin-flip model parameters for Figs. 3a, b, 4a, b
Extended Data Table 4 Spin-flip model parameters for Fig. 3c, d
Extended Data Table 5 Spin-flip model parameters for Extended Data Fig. 4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lindemann, M., Xu, G., Pusch, T. et al. Ultrafast spin-lasers. Nature 568, 212–215 (2019). https://doi.org/10.1038/s41586-019-1073-y

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing