Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of fermion-mediated interactions between bosonic atoms

Abstract

In high-energy and condensed-matter physics, particle exchange has an essential role in the understanding of long-range interactions and correlations. For example, the exchange of massive bosons leads to the Yukawa potential1,2, and phonon exchange between electrons gives rise to Cooper pairing in superconductors3. Here we show that, when a Bose–Einstein condensate of caesium atoms is embedded in a degenerate Fermi gas of lithium atoms, interspecies interactions can give rise to an effective trapping potential, damping, and attractive boson–boson interactions mediated by fermions. The latter, which is related to the Ruderman–Kittel–Kasuya–Yosida mechanism4, results from a coherent three-body scattering process. Such mediated interactions are expected to form new magnetic phases5 and supersolids6. We show that under suitable conditions, the mediated interactions can convert a stable Bose–Einstein condensate into a train of ‘Bose–Fermi solitons’7,8. The predicted long-range nature of the mediated interactions opens up the possibility of correlating distant atoms and preparing new quantum phases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mediated interactions between bosonic atoms through exchange of fermionic atoms in a Fermi sea.
Fig. 2: Dipole oscillations of a caesium BEC immersed in a lithium degenerate Fermi gas.
Fig. 3: Bare and effective caesium–caesium scattering length.
Fig. 4: Formation of Bose–Fermi solitons.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Yukawa, H. On the interaction of elementary particles. I. Proc. Phys.-Math. Soc. Jpn 3rd Ser. 17, 48–57 (1935).

    MATH  Google Scholar 

  2. Yukawa, H. & Sakata, S. On the interaction of elementary particles. II. Proc. Phys.-Math. Soc. Jpn 3rd Ser. 19, 1084–1093 (1937).

    CAS  MATH  Google Scholar 

  3. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, 1975).

    Google Scholar 

  4. Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).

    Article  ADS  CAS  Google Scholar 

  5. De, S. & Spielman, I. B. Fermion-mediated long-range interactions between bosons stored in an optical lattice. Appl. Phys. B 114, 527–536 (2014).

    Article  ADS  CAS  Google Scholar 

  6. Büchler, H. P. & Blatter, G. Supersolid versus phase separation in atomic Bose–Fermi mixtures. Phys. Rev. Lett. 91, 130404 (2003).

    Article  ADS  Google Scholar 

  7. Karpiuk, T. et al. Soliton trains in Bose–Fermi mixtures. Phys. Rev. Lett. 93, 100401 (2004).

    Article  ADS  CAS  Google Scholar 

  8. Santhanam, J., Kenkre, V. M. & Konotop, V. V. Solitons of Bose–Fermi mixtures in a strongly elongated trap. Phys. Rev. A 73, 013612 (2006).

    Article  ADS  Google Scholar 

  9. Lu, M., Burdick, N. Q., Youn, S. H. & Lev, B. L. Strongly dipolar Bose–Einstein condensate of dysprosium. Phys. Rev. Lett. 107, 190401 (2011).

    Article  ADS  Google Scholar 

  10. Balewski, J. B. et al. Coupling a single electron to a Bose–Einstein condensate. Nature 502, 664–667 (2013).

    Article  ADS  CAS  Google Scholar 

  11. Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    Article  ADS  CAS  Google Scholar 

  12. Ferrier-Barbut, I., Kadau, H., Schmitt, M., Wenzel, M. & Pfau, T. Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett. 116, 215301 (2016).

    Article  ADS  Google Scholar 

  13. Chomaz, L. et al. Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016).

    Google Scholar 

  14. Hazzard, K. R. A. et al. Many-body dynamics of dipolar molecules in an optical lattice. Phys. Rev. Lett. 113, 195302 (2014).

    Article  ADS  Google Scholar 

  15. Guardado-Sanchez, E. et al. Probing the quench dynamics of antiferromagnetic correlations in a 2D quantum Ising spin system. Phys. Rev. X 8, 021069 (2018).

    CAS  Google Scholar 

  16. Zeiher, J. et al. Many-body interferometry of a Rydberg-dressed spin lattice. Nat. Phys. 12, 1095–1099 (2016).

    Article  CAS  Google Scholar 

  17. Suchet, D., Wu, Z., Chevy, F. & Bruun, G. M. Long-range mediated interactions in a mixed-dimensional system. Phys. Rev. A 95, 043643 (2017).

    Article  ADS  Google Scholar 

  18. Tsurumi, T. & Wadati, M. Dynamics of magnetically trapped boson–fermion mixtures. J. Phys. Soc. Jpn 69, 97–103 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Chui, S. T. & Ryzhov, V. N. Collapse transition in mixtures of bosons and fermions. Phys. Rev. A 69, 043607 (2004).

    Article  ADS  Google Scholar 

  20. Santamore, D. H. & Timmermans, E. Fermion-mediated interactions in a dilute Bose–Einstein condensate. Phys. Rev. A 78, 013619 (2008).

    Article  ADS  Google Scholar 

  21. Berninger, M. et al. Feshbach resonances, weakly bound molecular states, and coupled-channel potentials for cesium at high magnetic fields. Phys. Rev. A 87, 032517 (2013).

    Article  ADS  Google Scholar 

  22. Tung, S. K. et al. Ultracold mixtures of atomic 6Li and 133Cs with tunable interactions. Phys. Rev. A 87, 010702(R) (2013).

    Article  ADS  Google Scholar 

  23. Johansen, J., DeSalvo, B. J., Patel, K. & Chin, C. Testing universality of Efimov physics across broad and narrow Feshbach resonances. Nat. Phys. 13, 731–735 (2017).

    Article  CAS  Google Scholar 

  24. DeSalvo, B. J., Patel, K., Johansen, J. & Chin, C. Observation of a degenerate Fermi gas trapped by a Bose–Einstein condensate. Phys. Rev. Lett. 119, 233401 (2017).

    Article  ADS  CAS  Google Scholar 

  25. Ferlaino, F. et al. Dipolar oscillations in a quantum degenerate Fermi–Bose atomic mixture. J. Opt. B 5, S3 (2003).

  26. Ferrier-Barbut, I. et al. A mixture of Bose and Fermi superfluids. Science 345, 1035–1038 (2014).

    Article  ADS  CAS  Google Scholar 

  27. Roy, R., Green, A., Bowler, R. & Gupta, S. Two-element mixture of Bose and Fermi superfluids. Phys. Rev. Lett. 118, 055301 (2017).

    Article  ADS  Google Scholar 

  28. Gensemer, S. D. & Jin, D. S. Transition from collisionless to hydrodynamic behavior in an ultracold Fermi gas. Phys. Rev. Lett. 87, 173201 (2001).

    Article  ADS  CAS  Google Scholar 

  29. Ferrari, G. et al. Collisional properties of ultracold K–Rb mixtures. Phys. Rev. Lett. 89, 053202 (2002).

    Article  ADS  CAS  Google Scholar 

  30. Lous, R. S. et al. Probing the interface of a phase-separated state in a repulsive Bose–Fermi mixture. Phys. Rev. Lett. 120, 243403 (2018).

    Article  ADS  CAS  Google Scholar 

  31. Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999).

    Article  ADS  CAS  Google Scholar 

  32. Leo, P. J., Williams, C. J. & Julienne, P. S. Collision properties of ultracold 133Cs atoms. Phys. Rev. Lett. 85, 2721–2724 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Gajda for discussions and M. McDonald for a careful reading of the manuscript. This work was supported by National Science Foundation (NSF) grant no. PHY-1511696 and the University of Chicago Materials Research Science and Engineering Center, which is funded by the NSF under grant no. DMR-1420709.

Reviewer information

Nature thanks Georg Bruun and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

B.J.D., K.P. and C.C. designed the experiment. K.P. and G.C. collected the data. B.J.D., K.P. and G.C. analysed the data. B.J.D. wrote the manuscript and all authors contributed to the final version.

Corresponding author

Correspondence to B. J. DeSalvo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Caesium–caesium and lithium–caesium scattering lengths over the studied magnetic field range.

The caesium–caesium scattering length aBB is shown with a blue line, and the lithium–caesium scattering length aBF with a red line. The interspecies Feshbach resonance near B = 892 G is used for sample preparation and the effective trapping frequency measurements, indicated by the light green shaded area. The caesium–caesium zero crossing near B = 880 G is used for the effective scattering length measurements, indicated by the blue shaded area. In this region, the lithium–caesium scattering length is nearly constant at aBF = −60a0 (ref. 22).

Extended Data Fig. 2 Raw data for measurement of the difference in scattering length.

Top, Measured radius of the caesium BEC with (red circles) and without (blue circles) lithium. Bottom, Measured BEC number with (red circles) and without (blue circles) lithium. At every field, the size of the BEC with lithium present is smaller than the corresponding measurement without lithium. However, overall experimental drift makes absolute comparison difficult. Calibrating each measurement point-by-point as described enables us to extract the difference in scattering length cleanly, as can be seen in Fig. 3b. Error bars are calculated as the standard error of the mean from multiple measurements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeSalvo, B.J., Patel, K., Cai, G. et al. Observation of fermion-mediated interactions between bosonic atoms. Nature 568, 61–64 (2019). https://doi.org/10.1038/s41586-019-1055-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-019-1055-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing