Observation of fermion-mediated interactions between bosonic atoms


In high-energy and condensed-matter physics, particle exchange has an essential role in the understanding of long-range interactions and correlations. For example, the exchange of massive bosons leads to the Yukawa potential1,2, and phonon exchange between electrons gives rise to Cooper pairing in superconductors3. Here we show that, when a Bose–Einstein condensate of caesium atoms is embedded in a degenerate Fermi gas of lithium atoms, interspecies interactions can give rise to an effective trapping potential, damping, and attractive boson–boson interactions mediated by fermions. The latter, which is related to the Ruderman–Kittel–Kasuya–Yosida mechanism4, results from a coherent three-body scattering process. Such mediated interactions are expected to form new magnetic phases5 and supersolids6. We show that under suitable conditions, the mediated interactions can convert a stable Bose–Einstein condensate into a train of ‘Bose–Fermi solitons’7,8. The predicted long-range nature of the mediated interactions opens up the possibility of correlating distant atoms and preparing new quantum phases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Mediated interactions between bosonic atoms through exchange of fermionic atoms in a Fermi sea.
Fig. 2: Dipole oscillations of a caesium BEC immersed in a lithium degenerate Fermi gas.
Fig. 3: Bare and effective caesium–caesium scattering length.
Fig. 4: Formation of Bose–Fermi solitons.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Yukawa, H. On the interaction of elementary particles. I. Proc. Phys.-Math. Soc. Jpn 3rd Ser. 17, 48–57 (1935).

    MATH  Google Scholar 

  2. 2.

    Yukawa, H. & Sakata, S. On the interaction of elementary particles. II. Proc. Phys.-Math. Soc. Jpn 3rd Ser. 19, 1084–1093 (1937).

    CAS  MATH  Google Scholar 

  3. 3.

    Tinkham, M. Introduction to Superconductivity (McGraw-Hill, 1975).

    Google Scholar 

  4. 4.

    Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    De, S. & Spielman, I. B. Fermion-mediated long-range interactions between bosons stored in an optical lattice. Appl. Phys. B 114, 527–536 (2014).

    ADS  CAS  Article  Google Scholar 

  6. 6.

    Büchler, H. P. & Blatter, G. Supersolid versus phase separation in atomic Bose–Fermi mixtures. Phys. Rev. Lett. 91, 130404 (2003).

    ADS  Article  Google Scholar 

  7. 7.

    Karpiuk, T. et al. Soliton trains in Bose–Fermi mixtures. Phys. Rev. Lett. 93, 100401 (2004).

    ADS  CAS  Article  Google Scholar 

  8. 8.

    Santhanam, J., Kenkre, V. M. & Konotop, V. V. Solitons of Bose–Fermi mixtures in a strongly elongated trap. Phys. Rev. A 73, 013612 (2006).

    ADS  Article  Google Scholar 

  9. 9.

    Lu, M., Burdick, N. Q., Youn, S. H. & Lev, B. L. Strongly dipolar Bose–Einstein condensate of dysprosium. Phys. Rev. Lett. 107, 190401 (2011).

    ADS  Article  Google Scholar 

  10. 10.

    Balewski, J. B. et al. Coupling a single electron to a Bose–Einstein condensate. Nature 502, 664–667 (2013).

    ADS  CAS  Article  Google Scholar 

  11. 11.

    Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    Ferrier-Barbut, I., Kadau, H., Schmitt, M., Wenzel, M. & Pfau, T. Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett. 116, 215301 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    Chomaz, L. et al. Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016).

    Google Scholar 

  14. 14.

    Hazzard, K. R. A. et al. Many-body dynamics of dipolar molecules in an optical lattice. Phys. Rev. Lett. 113, 195302 (2014).

    ADS  Article  Google Scholar 

  15. 15.

    Guardado-Sanchez, E. et al. Probing the quench dynamics of antiferromagnetic correlations in a 2D quantum Ising spin system. Phys. Rev. X 8, 021069 (2018).

    CAS  Google Scholar 

  16. 16.

    Zeiher, J. et al. Many-body interferometry of a Rydberg-dressed spin lattice. Nat. Phys. 12, 1095–1099 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Suchet, D., Wu, Z., Chevy, F. & Bruun, G. M. Long-range mediated interactions in a mixed-dimensional system. Phys. Rev. A 95, 043643 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Tsurumi, T. & Wadati, M. Dynamics of magnetically trapped boson–fermion mixtures. J. Phys. Soc. Jpn 69, 97–103 (2000).

    ADS  CAS  Article  Google Scholar 

  19. 19.

    Chui, S. T. & Ryzhov, V. N. Collapse transition in mixtures of bosons and fermions. Phys. Rev. A 69, 043607 (2004).

    ADS  Article  Google Scholar 

  20. 20.

    Santamore, D. H. & Timmermans, E. Fermion-mediated interactions in a dilute Bose–Einstein condensate. Phys. Rev. A 78, 013619 (2008).

    ADS  Article  Google Scholar 

  21. 21.

    Berninger, M. et al. Feshbach resonances, weakly bound molecular states, and coupled-channel potentials for cesium at high magnetic fields. Phys. Rev. A 87, 032517 (2013).

    ADS  Article  Google Scholar 

  22. 22.

    Tung, S. K. et al. Ultracold mixtures of atomic 6Li and 133Cs with tunable interactions. Phys. Rev. A 87, 010702(R) (2013).

    ADS  Article  Google Scholar 

  23. 23.

    Johansen, J., DeSalvo, B. J., Patel, K. & Chin, C. Testing universality of Efimov physics across broad and narrow Feshbach resonances. Nat. Phys. 13, 731–735 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    DeSalvo, B. J., Patel, K., Johansen, J. & Chin, C. Observation of a degenerate Fermi gas trapped by a Bose–Einstein condensate. Phys. Rev. Lett. 119, 233401 (2017).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Ferlaino, F. et al. Dipolar oscillations in a quantum degenerate Fermi–Bose atomic mixture. J. Opt. B 5, S3 (2003).

  26. 26.

    Ferrier-Barbut, I. et al. A mixture of Bose and Fermi superfluids. Science 345, 1035–1038 (2014).

    ADS  CAS  Article  Google Scholar 

  27. 27.

    Roy, R., Green, A., Bowler, R. & Gupta, S. Two-element mixture of Bose and Fermi superfluids. Phys. Rev. Lett. 118, 055301 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Gensemer, S. D. & Jin, D. S. Transition from collisionless to hydrodynamic behavior in an ultracold Fermi gas. Phys. Rev. Lett. 87, 173201 (2001).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Ferrari, G. et al. Collisional properties of ultracold K–Rb mixtures. Phys. Rev. Lett. 89, 053202 (2002).

    ADS  CAS  Article  Google Scholar 

  30. 30.

    Lous, R. S. et al. Probing the interface of a phase-separated state in a repulsive Bose–Fermi mixture. Phys. Rev. Lett. 120, 243403 (2018).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Leo, P. J., Williams, C. J. & Julienne, P. S. Collision properties of ultracold 133Cs atoms. Phys. Rev. Lett. 85, 2721–2724 (2000).

    ADS  CAS  Article  Google Scholar 

Download references


We thank M. Gajda for discussions and M. McDonald for a careful reading of the manuscript. This work was supported by National Science Foundation (NSF) grant no. PHY-1511696 and the University of Chicago Materials Research Science and Engineering Center, which is funded by the NSF under grant no. DMR-1420709.

Reviewer information

Nature thanks Georg Bruun and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information




B.J.D., K.P. and C.C. designed the experiment. K.P. and G.C. collected the data. B.J.D., K.P. and G.C. analysed the data. B.J.D. wrote the manuscript and all authors contributed to the final version.

Corresponding author

Correspondence to B. J. DeSalvo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Caesium–caesium and lithium–caesium scattering lengths over the studied magnetic field range.

The caesium–caesium scattering length aBB is shown with a blue line, and the lithium–caesium scattering length aBF with a red line. The interspecies Feshbach resonance near B = 892 G is used for sample preparation and the effective trapping frequency measurements, indicated by the light green shaded area. The caesium–caesium zero crossing near B = 880 G is used for the effective scattering length measurements, indicated by the blue shaded area. In this region, the lithium–caesium scattering length is nearly constant at aBF = −60a0 (ref. 22).

Extended Data Fig. 2 Raw data for measurement of the difference in scattering length.

Top, Measured radius of the caesium BEC with (red circles) and without (blue circles) lithium. Bottom, Measured BEC number with (red circles) and without (blue circles) lithium. At every field, the size of the BEC with lithium present is smaller than the corresponding measurement without lithium. However, overall experimental drift makes absolute comparison difficult. Calibrating each measurement point-by-point as described enables us to extract the difference in scattering length cleanly, as can be seen in Fig. 3b. Error bars are calculated as the standard error of the mean from multiple measurements.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

DeSalvo, B.J., Patel, K., Cai, G. et al. Observation of fermion-mediated interactions between bosonic atoms. Nature 568, 61–64 (2019). https://doi.org/10.1038/s41586-019-1055-0

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing