Abstract

NASA’S Origins, Spectral Interpretation, Resource Identification and Security-Regolith Explorer (OSIRIS-REx) spacecraft recently arrived at the near-Earth asteroid (101955) Bennu, a primitive body that represents the objects that may have brought prebiotic molecules and volatiles such as water to Earth1. Bennu is a low-albedo B-type asteroid2 that has been linked to organic-rich hydrated carbonaceous chondrites3. Such meteorites are altered by ejection from their parent body and contaminated by atmospheric entry and terrestrial microbes. Therefore, the primary mission objective is to return a sample of Bennu to Earth that is pristine—that is, not affected by these processes4. The OSIRIS-REx spacecraft carries a sophisticated suite of instruments to characterize Bennu’s global properties, support the selection of a sampling site and document that site at a sub-centimetre scale5,6,7,8,9,10,11. Here we consider early OSIRIS-REx observations of Bennu to understand how the asteroid’s properties compare to pre-encounter expectations and to assess the prospects for sample return. The bulk composition of Bennu appears to be hydrated and volatile-rich, as expected. However, in contrast to pre-encounter modelling of Bennu’s thermal inertia12 and radar polarization ratios13—which indicated a generally smooth surface covered by centimetre-scale particles—resolved imaging reveals an unexpected surficial diversity. The albedo, texture, particle size and roughness are beyond the spacecraft design specifications. On the basis of our pre-encounter knowledge, we developed a sampling strategy to target 50-metre-diameter patches of loose regolith with grain sizes smaller than two centimetres4. We observe only a small number of apparently hazard-free regions, of the order of 5 to 20 metres in extent, the sampling of which poses a substantial challenge to mission success.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

Data used in the plots in Figs. 1, 2 are available with this manuscript as Source Data. Raw and calibrated datasets will be available via the Planetary Data System (PDS) (https://sbn.psi.edu/pds/resource/orex/). Data are delivered to the PDS according to the OSIRIS-REx Data Management Plan, available in the OSIRIS-REx PDS archive. Higher-level products—for example, global mosaics and elevation maps—will be available in the Planetary Data System PDS one year after departure from the asteroid.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Lauretta, D. S. et al. The OSIRIS-REx target asteroid (101955) Bennu: constraints on its physical, geological, and dynamical nature from astronomical observations. Meteorit. Planet. Sci. 50, 834–849 (2015).

  2. 2.

    Hergenrother, C. W. et al. Lightcurve, color and phase function photometry of the OSIRIS-REx target asteroid (101955) Bennu. Icarus 226, 663–670 (2013).

  3. 3.

    Clark, B. E. et al. Asteroid (101955) 1999 RQ36: spectroscopy from 0.4 to 2.4 μm and meteorite analogs. Icarus 216, 462–475 (2011).

  4. 4.

    Lauretta, D. S. et al. OSIRIS-REx: sample return from asteroid (101955) Bennu. Space Sci. Rev. 212, 925–984 (2017).

  5. 5.

    Daly, M. G. et al. The OSIRIS-REx Laser Altimeter (OLA) investigation and instrument. Space Sci. Rev. 212, 899–924 (2017).

  6. 6.

    Bierhaus, E. B. et al. The OSIRIS-REx spacecraft and the Touch-and-Go Sample Acquisition Mechanism (TAGSAM). Space Sci. Rev. 214, 107 (2018).

  7. 7.

    Christensen, P. R. et al. The OSIRIS-REx thermal emission spectrometer (OTES) instrument. Space Sci. Rev. 214, 87 (2018).

  8. 8.

    Reuter, D. C. et al. The OSIRIS-REx visible and infrared spectrometer (OVIRS): spectral maps of the asteroid Bennu. Space Sci. Rev. 214, 54 (2018).

  9. 9.

    Rizk, B. et al. OCAMS: the OSIRIS-REx camera suite. Space Sci. Rev. 214, 26 (2018).

  10. 10.

    Masterson, R. A. et al. Regolith X-Ray Imaging Spectrometer (REXIS) aboard the OSIRIS-REx asteroid sample return mission. Space Sci. Rev. 214, 48 (2018).

  11. 11.

    McMahon, J. W. et al. The OSIRIS-REx radio science experiment at Bennu. Space Sci. Rev. 214, 43 (2018).

  12. 12.

    Emery, J. P. et al. Thermal infrared observations and thermophysical characterization of OSIRIS-REx target asteroid (101955) Bennu. Icarus 234, 17–35 (2014).

  13. 13.

    Nolan, M. C. et al. Shape model and surface properties of the OSIRIS-REx target asteroid (101955) Bennu from radar and lightcurve observations. Icarus 226, 629–640 (2013).

  14. 14.

    Hergenrother, C. W. et al. The design reference asteroid for the OSIRIS-REx mission target (101955) Bennu. Preprint at https://arxiv.org/abs/1409.4704 (2014).

  15. 15.

    Hamilton, V. E. et al. Evidence for widespread hydrated minerals on asteroid (101955) Bennu. Nat. Astron. https://doi.org/10.1038/s41550-019-0722-2 (2019).

  16. 16.

    Barnouin, O. S. et al. Shape of (101955) Bennu indicative of a rubble pile with internal stiffness. Nat. Geosci. https://doi.org/10.1038/s41561-019-0330-x (2019).

  17. 17.

    Scheeres, D. J. et al. The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements. Nat. Astron. https://doi.org/10.1038/s41550-019-0721-3 (2019).

  18. 18.

    Walsh, K. J. et al. Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface. Nat. Geosci. https://doi.org/10.1038/s41561-019-0326-6 (2019).

  19. 19.

    DellaGiustina, D. N. et al. Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis. Nat. Astron. https://doi.org/10.1038/s41550-019-0731-1 (2019).

  20. 20.

    Hergenrother, C. W. et al. Operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations. Nat. Commun. https://doi.org/10.1038/s41467-019-09213-x (2019).

  21. 21.

    Campins, H. et al. Compositional diversity among primitive asteroids. Prim. Meteor. Aster. 2018, 345–369 (2018).

  22. 22.

    Izawa, M. R. M. et al. Spectral reflectance properties of magnetites: implications for remote sensing. Icarus 319, 525–539 (2019).

  23. 23.

    Kerridge, J. F., Mackay, A. L. & Boynton, W. V. Magnetite in CI carbonaceous meteorites: origin by aqueous activity on a planetesimal surface. Science 205, 395–397 (1979).

  24. 24.

    Rubin, A. E., Trigo-Rodríguez, J. M., Huber, H. & Wasson, J. T. Progressive aqueous alteration of CM carbonaceous chondrites. Geochim. Cosmochim. Acta 71, 2361–2382 (2007).

  25. 25.

    Brearley, A. J. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween Jr, H. Y.), 587–624 (Univ. Arizona Press, Tucson, 2006).

  26. 26.

    Lantz, C., Binzel, R. P. & DeMeo, F. E. Space weathering trends on carbonaceous asteroids: a possible explanation for Bennu’s blue slope? Icarus 302, 10–17 (2018).

  27. 27.

    Thompson, M. S., Loeffler, M. J., Morris, R. V., Keller, L. P. & Christoffersen, R. Spectral and chemical effects of simulated space weathering of the Murchison CM2 carbonaceous chondrite. Icarus 319, 499–511 (2019).

  28. 28.

    Bischoff, A., Scott, E. R., Metzler, K. & Goodrich, C. A. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween Jr, H. Y.), 679–712 (Univ. Arizona Press, Tucson, 2006).

  29. 29.

    Delbo, M. et al. Thermal fatigue as the origin of regolith on small asteroids. Nature 508, 233–236 (2014).

  30. 30.

    Gundlach, B. & Blum, J. A new method to determine the grain size of planetary regolith. Icarus 223, 479–492 (2013).

  31. 31.

    Scheeres, D. J. et al. The geophysical environment of Bennu. Icarus 276, 116–140 (2016).

  32. 32.

    Binzel, R. P. et al. Spectral slope variations for OSIRIS-REx target asteroid (101955) Bennu: possible evidence for a fine-grained regolith equatorial ridge. Icarus 256, 22–29 (2015).

  33. 33.

    OSIRIS-REx Mission Status Update, Feb 11, 2019 https://www.asteroidmission.org/?mission_update=feb-11-2019 (2019).

  34. 34.

    Li, J.-Y., Helfenstein, P., Buratti, B. J., Takir, D. & Clark, B. E. in Asteroids IV (eds Michel, P. et al.) 129–150 (Univ. Arizona Press, Tucson, 2015).

  35. 35.

    DellaGiustina, D. N. et al. Overcoming the challenges associated with image-based mapping of small bodies in preparation for the OSIRIS-REx mission to (101955) Bennu. Earth Space Sci. 5, 929–949 (2018).

Download references

Acknowledgements

This material is based on work supported by NASA under contract NNM10AA11C, issued through the New Frontiers Program.

Reviewer information

Nature thanks Harry Y. McSween Jr and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Author notes

  1. A list of authors and their affiliations appears at the end of the paper.

  2. These authors contributed equally: D. S. Lauretta, D. N. DellaGiustina

Affiliations

  1. Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA

    • D. S. Lauretta
    • , D. N. DellaGiustina
    • , C. A. Bennett
    • , D. R. Golish
    • , K. J. Becker
    • , S. S. Balram-Knutson
    • , T. L. Becker
    • , W. V. Boynton
    • , C. Y. Drouet d’Aubigny
    • , H. L. Enos
    • , C. W. Hergenrother
    • , E. S. Howell
    • , M. C. Nolan
    • , B. Rizk
    • , H. L. Roper
    • , P. H. Smith
    • , C. W. V. Wolner
    • , M. Arvizu-Jakubicki
    • , E. Asphaug
    • , E. Audi
    • , R.-L. Ballouz
    • , R. Bandrowski
    • , K. J. Becker
    • , T. L. Becker
    • , S. Bendall
    • , C. A. Bennett
    • , H. Bloomenthal
    • , D. Blum
    • , W. V. Boynton
    • , J. Brodbeck
    • , K. N. Burke
    • , M. Chojnacki
    • , A. Colpo
    • , J. Contreras
    • , J. Cutts
    • , C. Y. Drouet d’Aubigny
    • , D. Dean
    • , D. N. DellaGiustina
    • , B. Diallo
    • , D. Drinnon
    • , K. Drozd
    • , H. L. Enos
    • , R. Enos
    • , C. Fellows
    • , T. Ferro
    • , M. R. Fisher
    • , G. Fitzgibbon
    • , M. Fitzgibbon
    • , J. Forelli
    • , T. Forrester
    • , I. Galinsky
    • , R. Garcia
    • , A. Gardner
    • , D. R. Golish
    • , N. Habib
    • , D. Hamara
    • , D. Hammond
    • , K. Hanley
    • , K. Harshman
    • , C. W. Hergenrother
    • , K. Herzog
    • , D. Hill
    • , C. Hoekenga
    • , S. Hooven
    • , E. S. Howell
    • , E. Huettner
    • , A. Janakus
    • , J. Jones
    • , T. R. Kareta
    • , J. Kidd
    • , K. Kingsbury
    • , S. S. Balram-Knutson
    • , L. Koelbel
    • , J. Kreiner
    • , D. Lambert
    • , D. S. Lauretta
    • , C. Lewin
    • , B. Lovelace
    • , M. Loveridge
    • , M. Lujan
    • , C. K. Maleszewski
    • , R. Malhotra
    • , K. Marchese
    • , E. McDonough
    • , N. Mogk
    • , V. Morrison
    • , E. Morton
    • , R. Munoz
    • , J. Nelson
    • , M. C. Nolan
    • , J. Padilla
    • , R. Pennington
    • , A. Polit
    • , N. Ramos
    • , V. Reddy
    • , M. Riehl
    • , B. Rizk
    • , H. L. Roper
    • , S. Salazar
    • , S. R. Schwartz
    • , S. Selznick
    • , N. Shultz
    • , P. H. Smith
    • , S. Stewart
    • , S. Sutton
    • , T. Swindle
    • , Y. H. Tang
    • , M. Westermann
    • , C. W. V. Wolner
    • , D. Worden
    • , T. Zega
    •  & Z. Zeszut
  2. The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA

    • O. S. Barnouin
    • , O. S. Barnouin
    • , K. Craft
    • , R. T. Daly
    • , C. Ernst
    • , R. C. Espiritu
    • , M. Holdridge
    • , M. Jones
    • , A. H. Nair
    • , L. Nguyen
    • , J. Peachey
    • , M. E. Perry
    • , J. Plescia
    • , J. H. Roberts
    • , R. Steele
    •  & R. Turner
  3. Southwest Research Institute, Boulder, CO, USA

    • W. F. Bottke
    • , V. E. Hamilton
    • , H. H. Kaplan
    • , K. J. Walsh
    • , W. F. Bottke
    • , V. E. Hamilton
    • , H. H. Kaplan
    •  & K. J. Walsh
  4. Department of Physics, University of Central Florida, Orlando, FL, USA

    • H. Campins
    • , H. Campins
    •  & Y. Fernandez
  5. Department of Physics and Astronomy, Ithaca College, Ithaca, NY, USA

    • B. E. Clark
    • , B. E. Clark
    •  & S. Ferrone
  6. Department of Geology, Rowan University, Glassboro, NJ, USA

    • H. C. Connolly Jr
    •  & H. C. Connolly Jr.
  7. NASA Goddard Space Flight Center, Greenbelt, MD, USA

    • J. P. Dworkin
    • , A. Aqueche
    • , B. Ashman
    • , M. Barker
    • , A. Bartels
    • , K. Berry
    • , B. Bos
    • , R. Burns
    • , A. Calloway
    • , R. Carpenter
    • , N. Castro
    • , R. Cosentino
    • , J. Donaldson
    • , J. P. Dworkin
    • , J. Elsila Cook
    • , C. Emr
    • , D. Everett
    • , D. Fennell
    • , K. Fleshman
    • , D. Folta
    • , D. Gallagher
    • , J. Garvin
    • , K. Getzandanner
    • , D. Glavin
    • , S. Hull
    • , K. Hyde
    • , H. Ido
    • , A. Ingegneri
    • , N. Jones
    • , P. Kaotira
    • , L. F. Lim
    • , A. Liounis
    • , C. Lorentson
    • , D. Lorenz
    • , J. Lyzhoft
    • , E. M. Mazarico
    • , R. Mink
    • , W. Moore
    • , M. Moreau
    • , S. Mullen
    • , J. Nagy
    • , G. Neumann
    • , J. Nuth
    • , D. Poland
    • , D. C. Reuter
    • , L. Rhoads
    • , S. Rieger
    • , D. Rowlands
    • , D. Sallitt
    • , A. Scroggins
    • , G. Shaw
    • , A. A. Simon
    • , J. Swenson
    • , P. Vasudeva
    • , M. Wasser
    •  & R. Zellar
  8. Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA

    • J. P. Emery
    • , J. P. Emery
    •  & L. McGraw
  9. Institute for Planetary Materials, Okayama University–Misasa, Misasa, Japan

    • M. R. M. Izawa
    •  & M. R. M. Izawa
  10. Smead Department of Aerospace Engineering, University of Colorado, Boulder, CO, USA

    • D. J. Scheeres
    • , D. N. Brack
    • , A. S. French
    • , J. W. McMahon
    •  & D. J. Scheeres
  11. Aerospace Corporation, Chantilly, VA, USA

    • D. E. Highsmith
    •  & J. Small
  12. Astronomical Institute, Charles University, Prague, Czech Republic

    • D. Vokrouhlický
  13. Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK

    • N. E. Bowles
    • , E. Brown
    • , K. L. Donaldson Hanna
    •  & T. Warren
  14. Canadian Space Agency, Saint-Hubert, Quebec, Canada

    • C. Brunet
    • , R. A. Chicoine
    • , S. Desjardins
    • , D. Gaudreau
    • , T. Haltigin
    • , S. Millington-Veloza
    •  & A. Rubi
  15. Catholic University of America, Washington, DC, USA

    • J. Aponte
    • , N. Gorius
    •  & A. Lunsford
  16. Center for Astrophysics, Harvard University, Cambridge, MA, USA

    • B. Allen
    • , J. Grindlay
    • , D. Guevel
    • , D. Hoak
    •  & J. Hong
  17. Center for Meteorite Studies, Arizona State University, Tempe, AZ, USA

    • D. L. Schrader
  18. City University of New York, New York, NY, USA

    • J. Bayron
  19. Colorado Center for Astrodynamics Research, University of Colorado, Boulder, CO, USA

    • O. Golubov
    •  & P. Sánchez
  20. Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia

    • J. Stromberg
  21. Department of Aerospace Engineering, Auburn University, Auburn, AL, USA

    • M. Hirabayashi
  22. Department of Aerospace Engineering, University of Maryland, College Park, MD, USA

    • C. M. Hartzell
  23. Department of Astronomy and Steward Observatory, University of Arizona, Tuscon, AZ, USA

    • S. Oliver
    •  & M. Rascon
  24. Department of Astronomy, Cornell University, Ithaca, NY, USA

    • A. Harch
    • , J. Joseph
    •  & S. Squyres
  25. Department of Astronomy, University of Maryland, College Park, MD, USA

    • D. Richardson
  26. Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada

    • R. Ghent
  27. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

    • R. P. Binzel
  28. Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada

    • M. M. Al Asad
    • , C. L. Johnson
    • , L. Philpott
    •  & H. C. M. Susorney
  29. Planetary Science Institute, Tucson, AZ, USA

    • C. L. Johnson
    • , R. W. Gaskell
    • , L. Le Corre
    • , J.-Y. Li
    • , J. L. Molaro
    • , E. E. Palmer
    • , M. A. Siegler
    • , P. Tricarico
    • , J. R. Weirich
    •  & X.-D. Zou
  30. Department of Geography, University of Winnipeg, Winnipeg, Manitoba, Canada

    • E. A. Cloutis
  31. Department of Geological Sciences, Jackson School of Geosciences, University of Texas, Austin, TX, USA

    • R. D. Hanna
  32. Department of Geoscience, University of Calgary, Calgary, Alberta, Canada

    • F. Ciceri
    • , A. R. Hildebrand
    •  & E.-M. Ibrahim
  33. Department of Geosciences, Stony Brook University, Stony Brook, NY, USA

    • L. Breitenfeld
    • , T. Glotch
    •  & A. D. Rogers
  34. Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ, USA

    • C. A. Thomas
  35. Edge Space Systems, Greenbelt, MD, USA

    • W. Chang
  36. General Dynamics C4 Systems, Denver, CO, USA

    • A. Cheuvront
  37. Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, HI, USA

    • D. Trang
  38. Hokkaido University, Sapporo, Japan

    • S. Tachibana
    •  & H. Yurimoto
  39. INAF–Astrophysical Observatory of Arcetri, Florence, Italy

    • J. R. Brucato
    •  & G. Poggiali
  40. INAF–Osservatorio Astronomico di Padova, Padova, Italy

    • M. Pajola
  41. INAF–Osservatorio Astronomico di Roma, Rome, Italy

    • E. Dotto
  42. Indigo Information Services, Tucson, AZ, USA

    • E. Mazzotta Epifani
    •  & M. K. Crombie
  43. Institut d’Astrophysique Spatiale, CNRS/Université Paris Sud, Orsay, France

    • C. Lantz
  44. Instituto de Astrofísica de Canarias and Departamento de Astrofísica, Universidad de La Laguna, Tenerife, Spain

    • J. de Leon
    • , J. Licandro
    •  & J. L. Rizos Garcia
  45. Jacobs Technology, Houston, TX, USA

    • S. Clemett
    •  & K. Thomas-Keprta
  46. JAXA Institute of Space and Astronautical Science, Sagamihara, Japan

    • S. Van wal
    • , M. Yoshikawa
    •  & S.-i. Watanabe
  47. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

    • J. Bellerose
    • , S. Bhaskaran
    • , C. Boyles
    • , S. R. Chesley
    • , C. M. Elder
    • , D. Farnocchia
    • , A. Harbison
    • , B. Kennedy
    • , A. Knight
    • , N. Martinez-Vlasoff
    • , N. Mastrodemos
    • , T. McElrath
    • , W. Owen
    • , R. Park
    • , B. Rush
    • , L. Swanson
    • , Y. Takahashi
    • , D. Velez
    •  & K. Yetter
  48. Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA

    • C. Thayer
  49. KinetX Aerospace, Inc., Simi Valley, CA, USA

    • C. Adam
    • , P. Antreasian
    • , J. Bauman
    • , C. Bryan
    • , B. Carcich
    • , M. Corvin
    • , J. Geeraert
    • , J. Hoffman
    • , J. M. Leonard
    • , E. Lessac-Chenen
    • , A. Levine
    • , J. McAdams
    • , L. McCarthy
    • , D. Nelson
    • , B. Page
    • , J. Pelgrift
    • , E. Sahr
    • , K. Stakkestad
    • , D. Stanbridge
    • , D. Wibben
    • , B. Williams
    • , K. Williams
    •  & P. Wolff
  50. Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA

    • P. Hayne
    •  & D. Kubitschek
  51. LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Paris Diderot, Sorbonne Paris Cité, Meudon, France

    • M. A. Barucci
    • , J. D. P. Deshapriya
    • , S. Fornasier
    • , M. Fulchignoni
    • , P. Hasselmann
    • , F. Merlin
    •  & A. Praet
  52. Lockheed Martin Space, Littleton, CO, USA

    • E. B. Bierhaus
    • , O. Billett
    • , A. Boggs
    • , B. Buck
    • , S. Carlson-Kelly
    • , J. Cerna
    • , K. Chaffin
    • , E. Church
    • , M. Coltrin
    • , J. Daly
    • , A. Deguzman
    • , R. Dubisher
    • , D. Eckart
    • , D. Ellis
    • , P. Falkenstern
    • , A. Fisher
    • , M. E. Fisher
    • , P. Fleming
    • , K. Fortney
    • , S. Francis
    • , S. Freund
    • , S. Gonzales
    • , P. Haas
    • , A. Hasten
    • , D. Hauf
    • , A. Hilbert
    • , D. Howell
    • , F. Jaen
    • , N. Jayakody
    • , M. Jenkins
    • , K. Johnson
    • , M. Lefevre
    • , H. Ma
    • , C. Mario
    • , K. Martin
    • , C. May
    • , M. McGee
    • , B. Miller
    • , C. Miller
    • , G. Miller
    • , A. Mirfakhrai
    • , E. Muhle
    • , C. Norman
    • , R. Olds
    • , C. Parish
    • , M. Ryle
    • , M. Schmitzer
    • , P. Sherman
    • , M. Skeen
    • , M. Susak
    • , B. Sutter
    • , Q. Tran
    • , C. Welch
    • , R. Witherspoon
    • , J. Wood
    •  & J. Zareski
  53. Macdonald, Dettwiler, and Associates, Brampton, Ontario, Canada

    • A. Bjurstrom
    • , L. Bloomquist
    • , C. Dickinson
    • , E. Keates
    • , J. Liang
    • , V. Nifo
    • , A. Taylor
    •  & F. Teti
  54. Malin Space Science Systems, San Diego, CA, USA

    • M. Caplinger
  55. Mars Space Flight Facility, Arizona State University, Tempe, AZ, USA

    • H. Bowles
    • , S. Carter
    • , S. Dickenshied
    • , D. Doerres
    • , T. Fisher
    • , W. Hagee
    • , J. Hill
    • , M. Miner
    • , D. Noss
    • , N. Piacentine
    • , M. Smith
    • , A. Toland
    •  & P. Wren
  56. Mines ParisTech, Paris, France

    • M. Bernacki
    •  & D. Pino Munoz
  57. Nagoya University, Nagoya, Japan

    • S.-i. Watanabe
  58. NASA Ames Research Center, Moffett Field, CA, USA

    • S. A. Sandford
  59. NASA Headquarters, Washington, DC, USA

    • J. Grossman
    • , G. Johnston
    • , M. Morris
    •  & J. Wendel
  60. NASA Johnson Space Center, Houston, TX, USA

    • A. Burton
    • , L. P. Keller
    • , L. McNamara
    • , S. Messenger
    • , K. Nakamura-Messenger
    • , A. Nguyen
    •  & K. Righter
  61. NASA Langley Research Center, Hampton, VA, USA

    • E. Queen
  62. NASA Marshall Space Flight Center, Huntsville, AL, USA

    • K. Bellamy
    • , K. Dill
    • , S. Gardner
    • , M. Giuntini
    • , B. Key
    • , J. Kissell
    • , D. Patterson
    • , D. Vaughan
    •  & B. Wright
  63. Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia

    • T. Ireland
  64. Royal Ontario Museum, Toronto, Ontario, Canada

    • K. Tait
  65. School of Earth and Planetary Sciences, Curtin University, Perth, Western Australia, Australia

    • P. Bland
  66. School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA

    • S. Anwar
    • , N. Bojorquez-Murphy
    • , P. R. Christensen
    • , C. W. Haberle
    • , G. Mehall
    •  & K. Rios
  67. School of Physical Sciences, The Open University, Milton Keynes, UK

    • I. Franchi
    •  & B. Rozitis
  68. SETI Institute, Mountain View, CA, USA

    • C. B. Beddingfield
    •  & J. Marshall
  69. Smithsonian Institution National Museum of Natural History, Washington, DC, USA

    • E. R. Jawin
    • , T. J. McCoy
    •  & S. Russell
  70. Southwest Meteorite Laboratory, Payson, AZ, USA

    • M. Killgore
  71. Space Science Institute, Boulder, CO, USA

    • J. L. Bandfield
    •  & B. C. Clark
  72. Space Systems Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA

    • M. Chodas
    • , M. Lambert
    •  & R. A. Masterson
  73. The Centre for Research in Earth and Space Science, York University, Toronto, Ontario, Canada

    • M. G. Daly
    • , J. Freemantle
    •  & J. A. Seabrook
  74. U.S. Geological Survey Astrogeology Science Center, Flagstaff, AZ, USA

    • J. Backer
    • , K. Edmundson
    • , J. Mapel
    • , M. Milazzo
    •  & S. Sides
  75. London Stereoscopic Company, London, UK

    • C. Manzoni
    •  & B. May
  76. Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France

    • M. Delbo’
    • , G. Libourel
    • , P. Michel
    • , A. Ryan
    •  & F. Thuillet
  77. Université de Lorraine, Nancy, France

    • B. Marty

Authors

  1. Search for D. S. Lauretta in:

  2. Search for D. N. DellaGiustina in:

  3. Search for C. A. Bennett in:

  4. Search for D. R. Golish in:

  5. Search for K. J. Becker in:

  6. Search for S. S. Balram-Knutson in:

  7. Search for O. S. Barnouin in:

  8. Search for T. L. Becker in:

  9. Search for W. F. Bottke in:

  10. Search for W. V. Boynton in:

  11. Search for H. Campins in:

  12. Search for B. E. Clark in:

  13. Search for H. C. Connolly Jr in:

  14. Search for C. Y. Drouet d’Aubigny in:

  15. Search for J. P. Dworkin in:

  16. Search for J. P. Emery in:

  17. Search for H. L. Enos in:

  18. Search for V. E. Hamilton in:

  19. Search for C. W. Hergenrother in:

  20. Search for E. S. Howell in:

  21. Search for M. R. M. Izawa in:

  22. Search for H. H. Kaplan in:

  23. Search for M. C. Nolan in:

  24. Search for B. Rizk in:

  25. Search for H. L. Roper in:

  26. Search for D. J. Scheeres in:

  27. Search for P. H. Smith in:

  28. Search for K. J. Walsh in:

  29. Search for C. W. V. Wolner in:

Consortia

  1. The OSIRIS-REx Team

Contributions

D.S.L. led the OSIRIS-REx mission, analysis and writing of the paper. D.N.D. leads the Image Processing Working Group (IPWG), which includes C.A.B., D.R.G., K.J.B., T.L.B., H.C., E.S.H. and P.H.S. The IPWG developed the image calibration pipeline, produced the global mosaic, analysed the surface for albedo variations and calculated the relative reflectance in the different MapCam filters. O.S.B. led the altimetry investigation and produced the elevation data. W.F.B. performed dynamical analysis linking Bennu to dark asteroids in the main asteroid belt. S.S.B.-K., W.V.B., B.E.C., C.Y.D.d’A., H.L.E., C.W.H., M.C.N. and B.R. designed the observation profiles and OCAMS operation plans for mission design and data acquisition. C.W.H. also led the astronomical characterization. H.C.C. Jr, J.P.D. and C.W.V.W. contributed to the content and writing of the manuscript. J.P.E. led the thermal analysis. V.E.H. led the spectral analysis, and M.R.M.I. and H.H.K. led the characterization and interpretation of the magnetite visible spectral properties. H.L.R. led the graphic design and figure development. D.J.S. led the radio science analysis and K.J.W. led the geological investigation of Bennu. The entire OSIRIS-REx Team made the encounter with Bennu possible.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to D. S. Lauretta.

Extended data

  1. Extended Data Fig. 1 The global mosaic of Bennu, projected onto a sinusoidal map that preserves area.

    The PolyCam images were photometrically corrected to mimic imaging conditions with phase, emission and incidence angles of 0°. The map has a pixel scale of 1.2 m per pixel. Images were taken on 25 November 2018.

  2. Extended Data Fig. 2 Areas used for the calculation of the albedo variation in Fig. 1d.

    Blue and orange outlines represent dark and bright clasts, respectively.

  3. Extended Data Fig. 3 Timeline of the various observations made during the Approach phase.

    The figure shows the key parameters affecting imaging conditions as a function of range to the asteroid and calendar date.

  4. Extended Data Fig. 4 Schematic of Preliminary Survey, showing passes over the north pole, equator, and south pole.

    Each trajectory leg lasts two days. The observations consist of MapCam mosaics made far from Bennu, both on the inbound and outbound legs from the closest approach, OLA observations made near the closest approach, both inbound and outbound, and additional MapCam mosaics made soon after the OLA observations but on the outbound legs of the polar flybys only. The time of closest approach to the pole was set at a nominal 17:00 utc for all flybys.

  5. Extended Data Table 1 Observation parameters for early PolyCam images
  6. Extended Data Table 2 Observation parameters for late PolyCam images
  7. Extended Data Table 3 Observation parameters for Preliminary Survey distant MapCam activities
  8. Extended Data Table 4 Observation parameters for close MapCam activities

Source data

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41586-019-1033-6

Further reading

  • Shape of (101955) Bennu indicative of a rubble pile with internal stiffness

    • O. S. Barnouin
    • , M. G. Daly
    • , E. E. Palmer
    • , R. W. Gaskell
    • , J. R. Weirich
    • , C. L. Johnson
    • , M. M. Al Asad
    • , J. H. Roberts
    • , M. E. Perry
    • , H. C. M. Susorney
    • , R. T. Daly
    • , E. B. Bierhaus
    • , J. A. Seabrook
    • , R. C. Espiritu
    • , A. H. Nair
    • , L. Nguyen
    • , G. A. Neumann
    • , C. M. Ernst
    • , W. V. Boynton
    • , M. C. Nolan
    • , C. D. Adam
    • , M. C. Moreau
    • , B. Rizk
    • , C. Y. Drouet D’Aubigny
    • , E. R. Jawin
    • , K. J. Walsh
    • , P. Michel
    • , S. R. Schwartz
    • , R.-L. Ballouz
    • , E. M. Mazarico
    • , D. J. Scheeres
    • , J. W. McMahon
    • , W. F. Bottke
    • , S. Sugita
    • , N. Hirata
    • , N. Hirata
    • , S.-i. Watanabe
    • , K. N. Burke
    • , D. N. DellaGiustina
    • , C. A. Bennett
    •  & D. S. Lauretta

    Nature Geoscience (2019)

  • The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations

    • C. W. Hergenrother
    • , C. K. Maleszewski
    • , M. C. Nolan
    • , J.-Y. Li
    • , C. Y. Drouet d’Aubigny
    • , F. C. Shelly
    • , E. S. Howell
    • , T. R. Kareta
    • , M. R. M. Izawa
    • , M. A. Barucci
    • , E. B. Bierhaus
    • , H. Campins
    • , S. R. Chesley
    • , B. E. Clark
    • , E. J. Christensen
    • , D. N. DellaGiustina
    • , S. Fornasier
    • , D. R. Golish
    • , C. M. Hartzell
    • , B. Rizk
    • , D. J. Scheeres
    • , P. H. Smith
    • , X.-D. Zou
    •  & D. S. Lauretta

    Nature Communications (2019)

  • Evidence for widespread hydrated minerals on asteroid (101955) Bennu

    • V. E. Hamilton
    • , A. A. Simon
    • , P. R. Christensen
    • , D. C. Reuter
    • , B. E. Clark
    • , M. A. Barucci
    • , N. E. Bowles
    • , W. V. Boynton
    • , J. R. Brucato
    • , E. A. Cloutis
    • , H. C. Connolly
    • , K. L. Donaldson Hanna
    • , J. P. Emery
    • , H. L. Enos
    • , S. Fornasier
    • , C. W. Haberle
    • , R. D. Hanna
    • , E. S. Howell
    • , H. H. Kaplan
    • , L. P. Keller
    • , C. Lantz
    • , J.-Y. Li
    • , L. F. Lim
    • , T. J. McCoy
    • , F. Merlin
    • , M. C. Nolan
    • , A. Praet
    • , B. Rozitis
    • , S. A. Sandford
    • , D. L. Schrader
    • , C. A. Thomas
    • , X.-D. Zou
    •  & D. S. Lauretta

    Nature Astronomy (2019)

  • All planets great and small

    Nature Geoscience (2019)

  • Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface

    • K. J. Walsh
    • , E. R. Jawin
    • , R.-L. Ballouz
    • , O. S. Barnouin
    • , E. B. Bierhaus
    • , H. C. Connolly
    • , J. L. Molaro
    • , T. J. McCoy
    • , M. Delbo’
    • , C. M. Hartzell
    • , M. Pajola
    • , S. R. Schwartz
    • , D. Trang
    • , E. Asphaug
    • , K. J. Becker
    • , C. B. Beddingfield
    • , C. A. Bennett
    • , W. F. Bottke
    • , K. N. Burke
    • , B. C. Clark
    • , M. G. Daly
    • , D. N. DellaGiustina
    • , J. P. Dworkin
    • , C. M. Elder
    • , D. R. Golish
    • , A. R. Hildebrand
    • , R. Malhotra
    • , J. Marshall
    • , P. Michel
    • , M. C. Nolan
    • , M. E. Perry
    • , B. Rizk
    • , A. Ryan
    • , S. A. Sandford
    • , D. J. Scheeres
    • , H. C. M. Susorney
    • , F. Thuillet
    •  & D. S. Lauretta

    Nature Geoscience (2019)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.