Perspective | Published:

Van der Waals integration before and beyond two-dimensional materials

Abstract

Material integration strategies, such as epitaxial growth, usually involve strong chemical bonds and are typically limited to materials with strict structure matching and processing compatibility. Van der Waals integration, in which pre-fabricated building blocks are physically assembled together through weak van der Waals interactions, offers an alternative bond-free integration strategy without lattice and processing limitations, as exemplified by two-dimensional van der Waals heterostructures. Here we review the development, challenges and opportunities of this emerging approach, generalizing it for flexible integration of diverse material systems beyond two dimensions, and discuss its potential for creating artificial heterostructures or superlattices beyond the reach of existing materials.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (John Wiley & Sons, Hoboken, 2006).

  2. 2.

    Arthur, J. R. Molecular beam epitaxy. Surf. Sci. 500, 189–217 (2002).

  3. 3.

    Doering, R. & Nishi, Y. Handbook of Semiconductor Manufacturing Technology (CRC Press, Boca Raton, 2007).

  4. 4.

    Kourkoutis, L. F., Song, J., Hwang, H. & Muller, D. Microscopic origins for stabilizing room-temperature ferromagnetism in ultrathin manganite layers. Proc. Natl Acad. Sci. USA 107, 11682–11685 (2010).

  5. 5.

    Matthews, J. & Blakeslee, A. Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118–125 (1974).

  6. 6.

    Vallet, M. et al. Highly strained AlAs type interfaces in InAs/AlSb heterostructures. Appl. Phys. Lett. 108, 211908 (2016).

  7. 7.

    Niehle, M., Rodriguez, J.-B., Cerutti, L., Tournié, E. & Trampert, A. On the origin of threading dislocations during epitaxial growth of III-Sb on Si (001): a comprehensive transmission electron tomography and microscopy study. Acta Mater. 143, 121–129 (2018).

  8. 8.

    Ni, Y. et al. Influence of the carbon-doping location on the material and electrical properties of a AlGaN/GaN heterostructure on Si substrate. Semicond. Sci. Technol. 30, 105037 (2015).

  9. 9.

    Gusev, E., Cabral, C. Jr, Copel, M., D’Emic, C. & Gribelyuk, M. Ultrathin HfO2 films grown on silicon by atomic layer deposition for advanced gate dielectrics applications. Microelectron. Eng. 69, 145–151 (2003).

  10. 10.

    Wang, X., Tabakman, S. M. & Dai, H. Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 130, 8152–8153 (2008).

  11. 11.

    Chen, L. Solid state amorphization in metal/Si systems. Mater. Sci. Eng. Rep. 29, 115–152 (2000).

  12. 12.

    Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1, 011304 (2014).

  13. 13.

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010). This paper reported the first 2D/2D vdW heterostructure between graphene and boron nitride with minimum interface disorder and examined the intrinsic electronic properties of graphene.

  14. 14.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  15. 15.

    He, Q. L. et al. Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure. Nat. Commun. 5, 4247 (2014).

  16. 16.

    Novoselov, K., Mishchenko, A., Carvalho, A. & Neto, A. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

  17. 17.

    Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

  18. 18.

    Liao, L. et al. High-κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proc. Natl Acad. Sci. USA 107, 6711–6715 (2010). This study first demonstrated vdW integration as a damage-free approach for graphene–dielectric integration with a pristine interface and retained electronic performance.

  19. 19.

    Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018). This study generalized vdW integration for bond-free integration of 3D metal thin-film electrodes with 2D semiconductors to create nearly ideal metal/semiconductor vdW junctions.

  20. 20.

    Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

  21. 21.

    Dzyaloshinskii, I. E., Lifshitz, E. & Pitaevskii, L. P. General theory of van der Waals forces. Phys. Uspekhi 4, 153–176 (1961).

  22. 22.

    Stone, A. The Theory of Intermolecular Forces (Oxford Univ. Press, Oxford, 2013).

  23. 23.

    Jones, J. E. On the determination of molecular fields.—II. From the equation of state of a gas. Proc. R. Soc. A 106, 463–477 (1924).

  24. 24.

    Eskandari Nasrabad, A. & Laghaei, R. Computational studies on thermodynamic properties, effective diameters, and free volume of argon using an ab initio potential. J. Chem. Phys. 125, 084510 (2006).

  25. 25.

    Autumn, K. et al. Evidence for van der Waals adhesion in gecko setae. Proc. Natl Acad. Sci. USA 99, 12252–12256 (2002).

  26. 26.

    Geim, A. K. et al. Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2, 461–463 (2003).

  27. 27.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

  28. 28.

    Yue, R. et al. Nucleation and growth of WSe2: enabling large grain transition metal dichalcogenides. 2D Mater. 4, 045019 (2017).

  29. 29.

    Fuhrer, M. et al. Crossed nanotube junctions. Science 288, 494–497 (2000).

  30. 30.

    Rueckes, T. et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000).

  31. 31.

    Duan, X., Huang, Y., Cui, Y., Wang, J. & Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001). This paper presented the initial assembled semiconductor nanowire junctions that inspired a broad range of vdW-integrated nanowire electronics and optoelectronics.

  32. 32.

    Huang, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science 294, 1313–1317 (2001).

  33. 33.

    Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).

  34. 34.

    Huang, Y., Duan, X. & Lieber, C. M. Nanowires for integrated multicolor nanophotonics. Small 1, 142–147 (2005).

  35. 35.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

  36. 36.

    Novoselov, K. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005). This work first demonstrated the exfoliation of various 2D crystals other than graphene.

  37. 37.

    Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2017).

  38. 38.

    Ponomarenko, L. et al. Tunable metal–insulator transition in double-layer graphene heterostructures. Nat. Phys. 7, 958–961 (2011).

  39. 39.

    Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012). This study demonstrated the first vertical tunnelling transistor from 2D/2D vdW heterostructures.

  40. 40.

    Yang, H. et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336, 1140–1143 (2012).

  41. 41.

    Yu, W. J. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246–252 (2013). This paper presented the first vertical logic integration from 2D vdW multi-heterostructures.

  42. 42.

    Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952–958 (2013).

  43. 43.

    Roy, K. et al. Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 8, 826–830 (2013).

  44. 44.

    Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

  45. 45.

    Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl Acad. Sci. USA 111, 6198–6202 (2014).

  46. 46.

    Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

  47. 47.

    Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14, 5590–5597 (2014).

  48. 48.

    Yuan, H. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10, 707–713 (2015).

  49. 49.

    Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

  50. 50.

    Ju, L. et al. Tunable excitons in bilayer graphene. Science 358, 907–910 (2017).

  51. 51.

    Xu, W. et al. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 541, 62–67 (2017).

  52. 52.

    Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017). This paper presented the assembly of wafer-scale 2D vdW heterostructures through layer-by-layer stacking.

  53. 53.

    Zhang, Z. et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357, 788–792 (2017).

  54. 54.

    Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

  55. 55.

    Lee, G.-H. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7, 7931–7936 (2013).

  56. 56.

    Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

  57. 57.

    Li, L. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 11, 593–597 (2016).

  58. 58.

    Liu, Y. et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 15, 3030–3034 (2015).

  59. 59.

    Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2017).

  60. 60.

    Georgiou, T. et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8, 100–103 (2013).

  61. 61.

    Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

  62. 62.

    Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

  63. 63.

    Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

  64. 64.

    Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).

  65. 65.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

  66. 66.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017). The above two papers first reported 2D magnets, providing a new material platform for 2D magnets and magnetic vdW heterostructures.

  67. 67.

    Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

  68. 68.

    Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

  69. 69.

    Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

  70. 70.

    Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

  71. 71.

    Seyler, K. et al. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett. 18, 3823–3828 (2018).

  72. 72.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

  73. 73.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). The above two papers first reported exotic electronic properties, including superconductivity arising in a twisted 2D/2D vdW homostructure.

  74. 74.

    Ni, Z. H. et al. Tunable stress and controlled thickness modification in graphene by annealing. ACS Nano 2, 1033–1039 (2008).

  75. 75.

    Liu, Y. et al. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2, 579 (2011).

  76. 76.

    Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012).

  77. 77.

    Liao, L. et al. Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett. 10, 1917–1921 (2010).

  78. 78.

    Liao, L. et al. High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Adv. Mater. 22, 1941–1945 (2010).

  79. 79.

    Liao, L. et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010). This study first demonstrated damage-free vdW integration of 1D/2D heterostructures for creating a high-speed graphene transistor with a self-aligned nanowire gate.

  80. 80.

    Liao, L. et al. Sub-100 nm channel length graphene transistors. Nano Lett. 10, 3952–3956 (2010).

  81. 81.

    Cheng, R. et al. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc. Natl Acad. Sci. USA 109, 11588–11592 (2012). This paper presented the first scalable vdW integration of a lithographically defined 1D gate array and 2D graphene with minimized interface damage to enable the construction of a high-speed transistor array.

  82. 82.

    Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014).

  83. 83.

    Jiang, S. et al. Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. Nat. Commun. 4, 2225 (2013).

  84. 84.

    Jia, C. et al. Quantum interference mediated vertical molecular tunneling transistors. Sci. Adv. 4, eaat8237 (2018).

  85. 85.

    Bediako, D. K. et al. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 558, 425–429 (2018).

  86. 86.

    Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015).

  87. 87.

    Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

  88. 88.

    Yao, B. et al. Gate-tunable frequency combs in graphene–nitride microresonators. Nature 558, 410–414 (2018).

  89. 89.

    Popa, D. et al. Graphene Q-switched, tunable fiber laser. Appl. Phys. Lett. 98, 073106 (2011).

  90. 90.

    Yao, B. et al. Graphene Q-switched distributed feedback fiber lasers with narrow linewidth approaching the transform limit. Opt. Express 25, 8202–8211 (2017).

  91. 91.

    Chow, C. M. et al. Unusual exciton–phonon interactions at van der Waals engineered interfaces. Nano Lett. 17, 1194–1199 (2017).

  92. 92.

    Lee, J. et al. Interfacial mode coupling as the origin of the enhancement of T c in FeSe films on SrTiO3. Nature 515, 245–248 (2014).

  93. 93.

    Ahn, J.-H. et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314, 1754–1757 (2006).

  94. 94.

    Kim, C., Burrows, P. E. & Forrest, S. R. Micropatterning of organic electronic devices by cold-welding. Science 288, 831–833 (2000).

  95. 95.

    Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5, 33–38 (2006).

  96. 96.

    Ding, S. et al. Reliable spin valves of conjugated polymer based on mechanically transferrable top electrodes. ACS Nano 12, 12657–12664 (2018).

  97. 97.

    Ko, H. et al. Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. Nature 468, 286–289 (2010).

  98. 98.

    Liu, Y. et al. Maximizing the current output in self-aligned graphene–InAs–metal vertical transistors. ACS Nano 13, 847–854 (2019).

  99. 99.

    Sun, Y., Choi, W. M., Jiang, H., Huang, Y. Y. & Rogers, J. A. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1, 201–207 (2006).

  100. 100.

    Chen, C.-C., Chang, C.-C., Li, Z., Levi, A. & Cronin, S. B. Gate tunable graphene–silicon Ohmic/Schottky contacts. Appl. Phys. Lett. 101, 223113 (2012).

  101. 101.

    Kioseoglou, G. et al. Electrical spin injection into Si: a comparison between Fe/Si Schottky and Fe/Al2O3 tunnel contacts. Appl. Phys. Lett. 94, 122106 (2009).

  102. 102.

    McCarthy, L. S. et al. GaN HBT: toward an RF device. IEEE Trans. Electron Dev. 48, 543–551 (2001).

  103. 103.

    Kyle, E. C., Kaun, S. W., Young, E. C. & Speck, J. S. Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN. Appl. Phys. Lett. 106, 222103 (2015).

  104. 104.

    Yim, K. H. et al. Efficient conjugated-polymer optoelectronic devices fabricated by thin-film transfer-printing technique. Adv. Funct. Mater. 18, 1012–1019 (2008).

  105. 105.

    Khang, D.-Y., Jiang, H., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006).

  106. 106.

    Tao, L. et al. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015).

  107. 107.

    Liu, Y., Duan, X., Huang, Y. & Duan, X. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 47, 6388–6409 (2018).

  108. 108.

    Kretinin, A. et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 14, 3270–3276 (2014).

  109. 109.

    Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

  110. 110.

    Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).

  111. 111.

    Duan, X. & Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298–302 (2000).

  112. 112.

    Xie, X.-L., Mai, Y.-W. & Zhou, X.-P. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. Rep. 49, 89–112 (2005).

  113. 113.

    Liao, L. et al. Scalable fabrication of self-aligned graphene transistors and circuits on glass. Nano Lett. 12, 2653–2657 (2011).

  114. 114.

    Tanase, M. et al. Magnetic alignment of fluorescent nanowires. Nano Lett. 1, 155–158 (2001).

  115. 115.

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

  116. 116.

    Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

  117. 117.

    Gurarslan, A. et al. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 8, 11522–11528 (2014).

  118. 118.

    Cui, X. et al. Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol. Nat. Commun. 9, 1301 (2018).

  119. 119.

    Desai, S. B. et al. Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv. Mater. 28, 4053–4058 (2016).

  120. 120.

    Zaretski, A. V. et al. Metal-assisted exfoliation (MAE): green, roll-to-roll compatible method for transferring graphene to flexible substrates. Nanotechnology 26, 045301 (2015).

  121. 121.

    Zaretski, A. V. & Lipomi, D. J. Processes for non-destructive transfer of graphene: widening the bottleneck for industrial scale production. Nanoscale 7, 9963–9969 (2015).

  122. 122.

    Kim, J. et al. Layer-resolved graphene transfer via engineered strain layers. Science 342, 833–836 (2013).

  123. 123.

    Bae, S.-H. et al. Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer-scale, single-domain graphene. Proc. Natl Acad. Sci. USA 114, 4082–4086 (2017).

  124. 124.

    Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

  125. 125.

    Lin, Z. et al. Solution processable colloidal nanoplates as building blocks for high-performance electronic thin films on flexible substrates. Nano Lett. 14, 6547–6553 (2014).

  126. 126.

    Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

  127. 127.

    Chen, G. & Hui, P. Thermal conductivities of evaporated gold films on silicon and glass. Appl. Phys. Lett. 74, 2942–2944 (1999).

  128. 128.

    Sundar, V. C. et al. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303, 1644–1646 (2004).

  129. 129.

    Liu, C. et al. Improving solution-processed n-type organic field-effect transistors by transfer-printed metal/semiconductor and semiconductor/semiconductor heterojunctions. Org. Electron. 15, 1884–1889 (2014).

Download references

Acknowledgements

X.D. acknowledges support by the Office of Naval Research through grant number N00014-15-1-2368. Y.H. acknowledges support by the National Science Foundation through grant number EFRI-1433541. Y.L. acknowledges support by Fundamental Research Funds for the Central Universities, China.

Reviewer information

Nature thanks Jeehwan Kim and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

All authors wrote and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Correspondence to Yu Huang or Xiangfeng Duan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Structural characteristics of conventional bonded heterostructure interfaces.
Fig. 2: Illustration and structural characteristics of vdW-integrated interfaces.
Fig. 3: Definition of vdW interaction, vdW distance and vdW gap.
Fig. 4: Schematics of state-of-the-art vdW-integrated electronic and optoelectronic devices.
Fig. 5: New opportunities in vdW-integrated heterostructures and superlattices beyond 2D materials.
Fig. 6: Potential layer-by-layer vdW assembly of a 3D electronic system.

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.