Extended Data Fig. 6: Association of proteomic subtypes with clinical features and prognosis signature proteins of HBV-related early stage HCC. | Nature

Extended Data Fig. 6: Association of proteomic subtypes with clinical features and prognosis signature proteins of HBV-related early stage HCC.

From: Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma

Extended Data Fig. 6

a, b, Association of MVI and serum AFP levels with proteomic subtypes. c, Association of age with proteomic subtypes. S-I (n = 36) HCC developed in older patients (62.0 ± 8.9 years), whereas S-II (n = 32) and S-III (n = 33) HCC generally developed in relatively young patients (54.5 ± 12.0 and 53.4 ± 10.1 years, respectively). The black lines denote the average age of the patients (mean ± s.d.) in the subtypes. d, e, Kaplan–Meier plots of HCC recurrence of subtypes identified in the proteomic (d) and Fudan (e) cohorts. The proteomic subtypes of patients from the Fudan cohort are classified by the nearest template prediction algorithm, with signature genes of proteomic subtypes (Methods). f, Prognosis signature proteins in proteomic subtypes. Heat map shows the relative abundance of each protein. Spearman’s correlation coefficients (cor.) between mRNA and protein expression levels and the log2(hazard ratio) of each protein are displayed on the right. Some of the prognosis signatures identified by proteomic analysis are highlighted by asterisks. For each subtype, the signature proteins are ordered by increasing hazard ratio (HR) values. P values are calculated by one-sided Fisher's exact test (a, b), two tailed Student’s t-test (c) and two-sided log-rank test (d, e).

Source data