Optical clock comparison for Lorentz symmetry testing


Questioning basic assumptions about the structure of space and time has greatly enhanced our understanding of nature. State-of-the-art atomic clocks1,2,3 make it possible to precisely test fundamental symmetry properties of spacetime and search for physics beyond the standard model at low energies of just a few electronvolts4. Modern tests of Einstein’s theory of relativity try to measure so-far-undetected violations of Lorentz symmetry5; accurately comparing the frequencies of optical clocks is a promising route to further improving such tests6. Here we experimentally demonstrate agreement between two single-ion optical clocks at the 10−18 level, directly validating their uncertainty budgets, over a six-month comparison period. The ytterbium ions of the two clocks are confined in separate ion traps with quantization axes aligned along non-parallel directions. Hypothetical Lorentz symmetry violations5,6,7 would lead to periodic modulations of the frequency offset as the Earth rotates and orbits the Sun. From the absence of such modulations at the 10−19 level we deduce stringent limits of the order of 10−21 on Lorentz symmetry violation parameters for electrons, improving previous limits8,9,10 by two orders of magnitude. Such levels of precision will be essential for low-energy tests of future quantum gravity theories describing dynamics at the Planck scale4, which are expected to predict the magnitude of residual symmetry violations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Testing Lorentz symmetry with two earthbound optical Yb+ clocks.
Fig. 2: Six-month-long frequency comparison between two ytterbium single-ion clocks operating on the 642-THz electric octupole transition.

Data availability

All data obtained in the study are available from the corresponding author on reasonable request.


  1. 1.

    Nicholson, T. L. et al. Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty. Nat. Commun. 6, 6896 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    Huntemann, N., Sanner, C., Lipphardt, B., Tamm, C. & Peik, E. Single-ion atomic clock with 3 × 10−18 systematic uncertainty. Phys. Rev. Lett. 116, 063001 (2016).

    ADS  CAS  Article  Google Scholar 

  3. 3.

    McGrew, W. F. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018).

    ADS  CAS  Article  Google Scholar 

  4. 4.

    Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  5. 5.

    Mattingly, D. Modern tests of Lorentz invariance. Living Rev. Relativ. 8, lrr-2005-5 (2005).

    Article  Google Scholar 

  6. 6.

    Kostelecký, V. A. & Vargas, A. J. Lorentz and CPT tests with clock-comparison experiments. Phys. Rev. D 98, 036003 (2018).

    ADS  Article  Google Scholar 

  7. 7.

    Colladay, D. & Kostelecký, V. A. Lorentz-violating extension of the standard model. Phys. Rev. D 58, 116002 (1998).

    ADS  Article  Google Scholar 

  8. 8.

    Altschul, B. Synchrotron and inverse Compton constraints on Lorentz violations for electrons. Phys. Rev. D 74, 083003 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    Hohensee, M. A. et al. Limits on violations of Lorentz symmetry and the Einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium. Phys. Rev. Lett. 111, 050401 (2013).

    ADS  CAS  Article  Google Scholar 

  10. 10.

    Pruttivarasin, T. et al. Michelson–Morley analogue for electrons using trapped ions to test Lorentz symmetry. Nature 517, 592–595 (2015).

    ADS  CAS  Article  Google Scholar 

  11. 11.

    Kennedy, R. J. & Thorndike, E. M. Experimental establishment of the relativity of time. Phys. Rev. 42, 400–418 (1932).

    ADS  Article  Google Scholar 

  12. 12.

    Kostelecký, V. A. & Russell, N. Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 83, 11–31 (2011).

    ADS  Article  Google Scholar 

  13. 13.

    Hughes, V. W., Robinson, H. G. & Beltran-Lopez, V. Upper limit for the anisotropy of inertial mass from nuclear resonance experiments. Phys. Rev. Lett. 4, 342–344 (1960).

    ADS  Article  Google Scholar 

  14. 14.

    Drever, R. W. P. A search for anisotropy of inertial mass using a free precession technique. Philos. Mag. 6, 683–687 (1961).

    ADS  Article  Google Scholar 

  15. 15.

    Müller, H., Herrmann, S., Saenz, A., Peters, A. & Lämmerzahl, C. Optical cavity tests of Lorentz invariance for the electron. Phys. Rev. D 68, 116006 (2003).

    ADS  Article  Google Scholar 

  16. 16.

    Müller, H. Testing Lorentz invariance by the use of vacuum and matter filled cavity resonators. Phys. Rev. D 71, 045004 (2005).

    ADS  Article  Google Scholar 

  17. 17.

    Megidish, E., Broz, J., Greene, N. & Häffner, H. Entanglement enhanced precision test of local Lorentz invariance. Preprint at https://arxiv.org/abs/1809.09807 (2018).

  18. 18.

    Campbell, S. L. et al. A Fermi-degenerate three-dimensional optical lattice clock. Science 358, 90–94 (2017).

    ADS  CAS  Article  Google Scholar 

  19. 19.

    Dzuba, V. A. et al. Strongly enhanced effects of Lorentz symmetry violation in entangled Yb+ ions. Nat. Phys. 12, 465–468 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Kostelecký, V. A. & Lane, C. D. Constraints on Lorentz violation from clock-comparison experiments. Phys. Rev. D 60, 116010 (1999).

    ADS  Article  Google Scholar 

  21. 21.

    Kostelecký, V. A. & Mewes, M. Signals for Lorentz violation in electrodynamics. Phys. Rev. D 66, 056005 (2002).

    ADS  Article  Google Scholar 

  22. 22.

    Kostelecký, V. A. & Tasson, J. D. Matter-gravity couplings and Lorentz violation. Phys. Rev. D 83, 016013 (2011).

    ADS  Article  Google Scholar 

  23. 23.

    Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    ADS  CAS  Article  Google Scholar 

  24. 24.

    Tamm, C. et al. Cs-based optical frequency measurement using cross-linked optical and microwave oscillators. Phys. Rev. A 89, 023820 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    Roos, C. F., Chwalla, M., Kim, K., Riebe, M. & Blatt, R. ‘Designer atoms’ for quantum metrology. Nature 443, 316–319 (2006).

    ADS  CAS  Article  Google Scholar 

  26. 26.

    Bluhm, R., Kostelecký, V. A., Lane, C. D. & Russell, N. Probing Lorentz and CPT violation with space-based experiments. Phys. Rev. D 68, 125008 (2003).

    ADS  Article  Google Scholar 

  27. 27.

    Matei, D. G. et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Zanon-Willette, T. et al. Composite laser-pulses spectroscopy for high-accuracy optical clocks: a review of recent progress and perspectives. Rep. Prog. Phys. 81, 094401 (2018).

    ADS  Article  Google Scholar 

  29. 29.

    Yudin, V. I. et al. Hyper-Ramsey spectroscopy of optical clock transitions. Phys. Rev. A 82, 011804 (2010).

    ADS  Article  Google Scholar 

  30. 30.

    Taichenachev, A. V. et al. Compensation of field-induced frequency shifts in Ramsey spectroscopy of optical clock transitions. JETP Lett. 90, 713–717 (2010).

    ADS  Article  Google Scholar 

  31. 31.

    Delva, P. et al. Test of special relativity using a fiber network of optical clocks. Phys. Rev. Lett. 118, 221102 (2017).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Shaniv, R. et al. New methods for testing Lorentz invariance with atomic systems. Phys. Rev. Lett. 120, 103202 (2018).

    ADS  CAS  Article  Google Scholar 

  33. 33.

    Doležal, M. et al. Analysis of thermal radiation in ion traps for optical frequency standards. Metrologia 52, 842–856 (2015).

    ADS  Article  Google Scholar 

  34. 34.

    Keller, J., Partner, H. L., Burgermeister, T. & Mehlstäubler, T. E. Precise determination of micromotion for trapped-ion optical clocks. J. Appl. Phys. 118, 104501 (2015); correction 119, 059902 (2016).

    ADS  Article  Google Scholar 

  35. 35.

    Dubé, P., Madej, A. A., Zhou, Z. & Bernard, J. E. Evaluation of systematic shifts of the 88Sr+ single-ion optical frequency standard at the 10−17 level. Phys. Rev. A 87, 023806 (2013).

    ADS  Article  Google Scholar 

  36. 36.

    Godun, R. M. et al. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants. Phys. Rev. Lett. 113, 210801 (2014).

    ADS  CAS  Article  Google Scholar 

  37. 37.

    Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008).

    ADS  CAS  Article  Google Scholar 

Download references


We thank B. Altschul, A. Goban, R. Hutson, A. Kostelecký, T. Mehlstäubler, M. Mewes, A. Vargas-Silva and J. Zhang for discussions and B. Lipphardt for experimental assistance. This research received funding from the European Metrology Programme for Innovation and Research (EMPIR project OC18), co-financed by the Participating States and the European Union’s Horizon 2020 research and innovation programme, and from DFG through CRC 1227 (DQ-mat). This work was also supported in part by the Office of Naval Research, USA, under award number N00014-17-1-2252, by NSF through grant PHY-1620687 (USA) and by the Russian Foundation for Basic Research under grant number 17-02-00216. C.S. thanks the Humboldt Foundation for support.

Author information




C.S., N.H. and E.P. conceived the experiment and developed the methods. C.S., N.H., R.L. and C.T. designed and constructed the experimental apparatus. C.S., N.H., R.L., M.S.S. and S.G.P. acquired and analysed the data. All authors were involved in the preparation and discussion of the manuscript.

Corresponding author

Correspondence to Christian Sanner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains details about the transformation between lab frame and celestial frame and derives explicit formulas for the matrix elements of the T0(2) operator.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanner, C., Huntemann, N., Lange, R. et al. Optical clock comparison for Lorentz symmetry testing. Nature 567, 204–208 (2019). https://doi.org/10.1038/s41586-019-0972-2

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.