Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalogue of topological electronic materials

Abstract

Topological electronic materials such as bismuth selenide, tantalum arsenide and sodium bismuthide show unconventional linear response in the bulk, as well as anomalous gapless states at their boundaries. They are of both fundamental and applied interest, with the potential for use in high-performance electronics and quantum computing. But their detection has so far been hindered by the difficulty of calculating topological invariant properties (or topological nodes), which requires both experience with materials and expertise with advanced theoretical tools. Here we introduce an effective, efficient and fully automated algorithm that diagnoses the nontrivial band topology in a large fraction of nonmagnetic materials. Our algorithm is based on recently developed exhaustive mappings between the symmetry representations of occupied bands and topological invariants. We sweep through a total of 39,519 materials available in a crystal database, and find that as many as 8,056 of them are topologically nontrivial. All results are available and searchable in a database with an interactive user interface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow chart for our automatic diagnostic algorithm.
Fig. 2: Definition of valence bands and conduction bands.
Fig. 3: The five candidates for the five classes of topological material.

Similar content being viewed by others

Data availability

All results are available and searchable with an interactive user interface at http://materiae.iphy.ac.cn. Codes for obtaining the irreducible representations are available from the corresponding author upon reasonable request.

References

  1. Kane, C. L. & Mele, E. J. Z. Z 2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  CAS  Google Scholar 

  2. Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  CAS  Google Scholar 

  3. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  ADS  Google Scholar 

  4. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  CAS  Google Scholar 

  5. Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  CAS  Google Scholar 

  6. Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008).

    Article  ADS  Google Scholar 

  7. Kitaev, A. Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22–30 (2009).

    Article  ADS  CAS  Google Scholar 

  8. Chiu, C. K., Teo, J. C., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

    Article  ADS  Google Scholar 

  9. Hsieh, T. H. et al. Topological crystalline insulators in the SnTe material class. Nat. Commun. 3, 982 (2012); corrigendum 4, 1901 (2013).

    Article  Google Scholar 

  10. Song, Z., Fang, Z. & Fang, C. (d-2)-dimensional edge states of rotation symmetry protected topological states. Phys. Rev. Lett. 119, 246402 (2017).

    Article  ADS  Google Scholar 

  11. Fang, C. & Fu, L. Rotation anomaly and topological crystalline insulators. Preprint at https://arxiv.org/abs/1709.01929 (2017).

  12. Schindler, F. et al. Higher-order topological insulators. Sci. Adv. 4, eaat0346 (2018).

    Article  ADS  Google Scholar 

  13. Wang, Z., Alexandradinata, A., Cava, R. J. & Bernevig, B. A. Hourglass fermions. Nature 532, 189–194 (2016).

    Article  ADS  CAS  Google Scholar 

  14. Wieder, B. J. et al. Wallpaper fermions and the nonsymmorphic Dirac insulator. Science 361, 246–251 (2018).

    Article  ADS  CAS  Google Scholar 

  15. Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).

    Article  ADS  CAS  Google Scholar 

  16. Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007); corrigendum 10, 029802 (2008).

    Article  ADS  Google Scholar 

  17. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  18. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    Article  ADS  CAS  Google Scholar 

  19. Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A= Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    Article  ADS  Google Scholar 

  20. Burkov, A. A., Hook, M. D. & Balents, L. Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011).

    Article  ADS  Google Scholar 

  21. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  22. Yu, R., Qi, X. L., Bernevig, A., Fang, Z. & Dai, X. Equivalent expression of Z2 topological invariant for band insulators using the non-abelian Berry connection. Phys. Rev. B 84, 075119 (2011).

    Article  ADS  Google Scholar 

  23. Fang, C. & Fu, L. New classes of three-dimensional topological crystalline insulators: nonsymmorphic and magnetic. Phys. Rev. B 91, 161105 (2015).

    Article  ADS  Google Scholar 

  24. Shiozaki, K., Sato, M. & Gomi, K. Z. Z 2 topology in nonsymmorphic crystalline insulators: Möbius twist in surface states. Phys. Rev. B 91, 155120 (2015).

    Article  ADS  Google Scholar 

  25. Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    Article  ADS  CAS  Google Scholar 

  26. Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry-based indicators of band topology in the 230 space groups. Nat. Commun. 8, 50 (2017); erratum 8, 931 (2017).

    Article  ADS  Google Scholar 

  27. Song, Z., Zhang, T., Fang, Z. & Fang, C. Quantitative mappings between symmetry and topology in solids. Nat. Commun. 9, 3530 (2018).

    Article  ADS  Google Scholar 

  28. Khalaf, E., Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry indicators and anomalous surface states of topological crystalline insulators. Phys. Rev. X 8, 031070 (2018).

    Google Scholar 

  29. Kruthoff, J., de Boer, J., van Wezel, J., Kane, C. L. & Slager, R. J. Topological classification of crystalline insulators through band structure combinatorics. Phys. Rev. X 7, 041069 (2017).

    Google Scholar 

  30. Song, Z., Zhang, T. & Fang, C. Diagnosis for nonmagnetic topological semimetals in the absence of spin-orbital coupling. Phys. Rev. X 8, 031069 (2018).

    Google Scholar 

  31. Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  ADS  Google Scholar 

  32. Hellenbrandt, M. The inorganic crystal structure database (ICSD)—present and future. Crystallogr. Rev. 10, 17–22 (2004).

    Article  CAS  Google Scholar 

  33. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  ADS  CAS  Google Scholar 

  34. Elcoro, L. et al. Double crystallographic groups and their representations on the Bilbao Crystallographic Server. J. Appl. Cryst. 50, 1457–1477 (2017).

    Article  CAS  Google Scholar 

  35. Chang, G. et al. Unconventional chiral fermions and large topological Fermi arcs in RhSi. Phys. Rev. Lett. 119, 206401 (2017).

    Article  ADS  Google Scholar 

  36. Flicker, F. et al. Chiral optical response of multifold fermions. Phys. Rev. B 98, 155145 (2018).

    Article  ADS  Google Scholar 

  37. Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

    Article  MathSciNet  Google Scholar 

  38. Fang, C., Chen, Y., Kee, H. Y. & Fu, L. Topological nodal line semimetals with and without spin-orbital coupling. Phys. Rev. B 92, 081201 (2015).

    Article  ADS  Google Scholar 

  39. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article  ADS  Google Scholar 

  40. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  41. Langbehn, J., Peng, Y., Trifunovic, L., von Oppen, F. & Brouwer, P. W. Reflection-symmetric second-order topological insulators and superconductors. Phys. Rev. Lett. 119, 246401 (2017).

    Article  ADS  Google Scholar 

  42. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B 96, 245115 (2017).

    Article  ADS  Google Scholar 

  43. Zhang, P. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360, 182–186 (2018).

    Article  ADS  Google Scholar 

  44. Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018).

    Article  ADS  CAS  Google Scholar 

  45. Yin, J. X. et al. Observation of a robust zero-energy bound state in iron-based superconductor Fe (Te, Se). Nat. Phys. 11, 543–546 (2015).

    Article  CAS  Google Scholar 

  46. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).

    Article  CAS  Google Scholar 

  47. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    Article  ADS  CAS  Google Scholar 

  48. Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).

    Article  ADS  CAS  Google Scholar 

  49. Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  ADS  CAS  Google Scholar 

  50. Gu, Z. C. & Wen, X. G. Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order. Phys. Rev. B 80, 155131 (2009).

    Article  ADS  Google Scholar 

  51. Affleck, I. Quantum spin chains and the Haldane gap. J. Phys. Condens. Matter 1, 3047 (1989).

    Article  ADS  Google Scholar 

  52. Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).

    Article  ADS  Google Scholar 

  53. Lu, F., Zhao, J., Weng, H., Fang, Z. & Dai, X. Correlated topological insulators with mixed valence. Phys. Rev. Lett. 110, 096401 (2013).

    Article  ADS  Google Scholar 

  54. Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  55. Huang, S. M. et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

    Article  CAS  Google Scholar 

  56. Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article  CAS  Google Scholar 

  57. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).

    Article  ADS  CAS  Google Scholar 

  58. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  59. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  ADS  CAS  Google Scholar 

  60. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1 (2015).

    Article  CAS  Google Scholar 

  61. Alexandradinata, A., Wang, Z. & Bernevig, B. A. Topological Insulators from Group Cohomology. Phys. Rev. X 6, 021008 (2016).

    Google Scholar 

Download references

Acknowledgements

We are grateful for suggestions and comments from M. Liu, B. Bradlyn, H. Watanabe and B. Wieder. We acknowledge support from the Ministry of Science and Technology of China under grant numbers 2016YFA0302400, 2016YFA0300600 and 2018YFA0305700; the National Science Foundation of China under grant numbers 11674370, 11421092 and 11674369; and the Chinese Academy of Sciences under grant numbers XXH13506-202, XDB07020100 and XDB28000000. We also acknowledge support from the Science Challenge Project (number TZ2016004), the K. C. Wong Education Foundation (GJTD-2018-01), the Beijing Municipal Science and Technology Commission (Z181100004218001) and the Beijing Natural Science Foundation (Z180008).

Reviewer information

Nature thanks J. Checkelsky, M. Franz and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

C.F. conceived the work; H.W. and Z.F. were in charge of the numerical methods and checked for consistency with previous works; T.Z. did the major part of the calculations and analyses of materials; Y.J., Z.S., H.H. and Y.H. wrote the code for analysing irreducible representations and symmetry-based indicators; H.H. and Y.H. built the website. C.F., H.W. and Z.F. wrote the main text; and T.Z., Y.J. and Z.S wrote the Methods section and the Supplementary Information.

Corresponding authors

Correspondence to Hongming Weng or Chen Fang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Nodal-ring configuration in BaC20 (nsoc setting).

This material is in space group \({\rm{Pm}}\bar{{\rm{3n}}}\). a, The three equivalent nodal rings in the \({{\boldsymbol{k}}}_{i}=0\left(i=x,y,z\right)\) planes, protected by the mirror symmetries on these planes. b, The six equivalent nodal rings in the \({{\boldsymbol{k}}}_{i}\pm {{\boldsymbol{k}}}_{j}=0\left(i,j=x,y,z,\hspace{2.77626pt}i\ne j\right)\) planes, protected by the glide symmetries on these planes.

Extended Data Fig. 2 Topological invariants and surface states of Zr(TiH2)2.

a, Brillouin zone for Zr(TiH2)2, in which the yellow plane is \({m}_{1\bar{1}0}\). b, Wilson loop for Zr(TiH2)2 in the \({m}_{1\bar{1}0}\) plane. c, One-dimensional helical modes in a cubic Zr(TiH2)2 sample. d, Two-dimensional surface states on each surface of a cubic Zr(TiH2)2 sample.

Extended Data Table 1 Possible invariants for space group 227

Supplementary information

Supplementary Tables

This file contains five tables. These are the lists of all topological materials theoretically discovered in this work. The materials are sorted into the five classes of “high-symmetry-point semimetals”, “high-symmetry-line semimetals”, “generic-momenta semimetals”, “topological insulators” and “topological crystalline insulators” in Tables I, II, III, IV and V, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Jiang, Y., Song, Z. et al. Catalogue of topological electronic materials. Nature 566, 475–479 (2019). https://doi.org/10.1038/s41586-019-0944-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-019-0944-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing