Extended Data Fig. 3: Decreasing disruption is robust across years, topics, authors, time periods and windows of disruption. | Nature

Extended Data Fig. 3: Decreasing disruption is robust across years, topics, authors, time periods and windows of disruption.

From: Large teams develop and small teams disrupt science and technology

Extended Data Fig. 3

a, For research articles (24,174,022 WOS articles published between 1954 and 2014), patents (2,548,038 US patents assigned between 2002 and 2014) and software (26,900 GitHub repositories uploaded between 2011 and 2014), median citations (red curves, indexed by right y axis) increase with team size from 1 to 100 (rather than 1 to 10 as in Figs. 2a–c, 4a–c), whereas the average disruption percentile (green curves, indexed by left y axis) decreases with team size. For all datasets, we present work with one or more citations. Green dotted lines show the point at which D = 0, the transition from development to disruption. Bootstrapped 95% confidence intervals are shown as grey zones. b, Plot of the regression coefficients of disruption (rather than disruption percentile as in Fig. 3c) on team size, from linear regressions controlling for publication year, topics and author. The regression is based on the 96,386,516 WOS research articles (articles are counted repeatedly if they appear across the publication records of different scholars) contributed by 38,000,470 name-disambiguated scholars. c, The negative correlation between disruption and team size holds across time periods. In contrast to the main body of the paper, which renders disruption in terms of percentile change, here we measure it in the native metric of disruption to highlight the shift with time. Earlier cohorts (red curves) are more disruptive than later cohorts. Nevertheless, with changes in team size, each cohort of papers traverses a majority of the total variation of disruption for that cohort. dh, Decreasing disruption percentile and increasing citations with growing team size are robust to changes in the width of the time-window of observation from 5 years to 40 years for 166,310 WOS articles published in 1970. im, As in dh, but using 24,174,022 WOS papers published between 1954–2014; we observe the same pattern.

Back to article page