Extended Data Fig. 10: Small, disruptive teams contribute disproportionately to Nobel Prizes and are underrepresented with government funding. | Nature

Extended Data Fig. 10: Small, disruptive teams contribute disproportionately to Nobel Prizes and are underrepresented with government funding.

From: Large teams develop and small teams disrupt science and technology

Extended Data Fig. 10

a, Underfunded small-team, disruptive research. Disruption percentile versus team size for WOS papers either not annotated as funded, or as funded by the largest government agencies around the world. The 477,702 funded papers cover the time period 2004–2014, and include 198,103 for NSF, 80,448 for NSFC, 81,296 for ERC and EC, 75,881 for DFG and 58,275 for JSPS. These papers are published across 7,325 journals, and a paper may be funded by multiple agencies. The average disruption of these papers is −0.0024, ranking in the tail 31.0% of all WOS papers in the same period. We select 5,305,534 papers without any funding annotations from the same 7,325 journals and same time period (2004–2014) as a control group (dashed curve). The dashed grey line shows the mean disruption percentile for the control group. b, We select 191,717 papers published between 2008 and 2014 that acknowledged NSF with a grant number and retrieved grant size from the NSF website, including 140,972 papers for less than or equal to 1 million US dollars, 24,370 papers for 1–5 million US dollars and 26,375 papers for more than 5 million US dollars. The green and red zones mark two regions of interest: small-team (three or fewer members) disruptive (positive disruption) papers in green and large-team developing work in red. The probability of observing small-team disruptive papers in NSF granted papers is almost half that of observing them in the control group. c, We select 877 Nobel-Prize-winning papers that cover the time period 1902–2009, including 316 papers in Physiology or Medicine, 284 papers in Physics and 277 papers in Chemistry. We select 3,372,570 papers from the same 178 journals and same time period (1902–2009) as a control group (dashed curve). The average disruption of the Nobel-prize-winning papers is 0.10, ranking among the top 2% of all WOS papers from the same period. d, The probability of observing small-team disruptive papers is nearly three times as high in Nobel-Prize-winning papers as in the control group.

Back to article page