Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deacylative transformations of ketones via aromatization-promoted C–C bond activation


Carbon–hydrogen (C–H) and carbon–carbon (C–C) bonds are the main constituents of organic matter. Recent advances in C–H functionalization technology have vastly expanded our toolbox for organic synthesis1. By contrast, C–C activation methods that enable editing of the molecular skeleton remain limited2,3,4,5,6,7. Several methods have been proposed for catalytic C–C activation, particularly with ketone substrates, that are typically promoted by using either ring-strain release as a thermodynamic driving force4,6 or directing groups5,7 to control the reaction outcome. Although effective, these strategies require substrates that contain highly strained ketones or a preinstalled directing group, or are limited to more specialist substrate classes5. Here we report a general C–C activation mode driven by aromatization of a pre-aromatic intermediate formed in situ. This reaction is suitable for various ketone substrates, is catalysed by an iridium/phosphine combination and is promoted by a hydrazine reagent and 1,3-dienes. Specifically, the acyl group is removed from the ketone and transformed to a pyrazole, and the resulting alkyl fragment undergoes various transformations. These include the deacetylation of methyl ketones, carbenoid-free formal homologation of aliphatic linear ketones and deconstructive pyrazole synthesis from cyclic ketones. Given that ketones are prevalent in feedstock chemicals, natural products and pharmaceuticals, these transformations could offer strategic bond disconnections in the synthesis of complex bioactive molecules.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: C–C activation driven by aromatization.
Fig. 2: Iridium-catalysed cleavage of unstrained ketones.
Fig. 3: Deacylative C–C forming reactions of linear ketones.
Fig. 4: Deconstructive pyrazole synthesis from ketones.

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information. Additional data are available from the corresponding authors upon request. Metrical parameters for the structure of 123 are available free of charge from the Cambridge Crystallographic Data Centre ( under reference number CCDC 1876535.


  1. Karimov, R. R. & Hartwig, J. F. Transition-metal-catalyzed selective functionalization of C(sp 3)-H bonds in natural products. Angew. Chem. Int. Ed. 57, 4234–4241 (2018).

    Article  CAS  Google Scholar 

  2. Murakami, M. & Ito, Y. Cleavage of carbon–carbon single bonds by transition metals. Top. Organomet. Chem. 3, 97–129 (1999).

    Article  CAS  Google Scholar 

  3. Chen, F., Wang, T. & Jiao, N. Recent advances in transition-metal-catalyzed functionalization of unstrained carbon–carbon bonds. Chem. Rev. 114, 8613–8661 (2014).

    Article  CAS  Google Scholar 

  4. Souillart, L. & Cramer, N. Catalytic C–C bond activations via oxidative addition to transition metals. Chem. Rev. 115, 9410–9464 (2015).

    Article  CAS  Google Scholar 

  5. Kim, D.-S., Park, W.-J. & Jun, C.-H. Metal–organic cooperative catalysis in C–H and C–C bond activation. Chem. Rev. 117, 8977–9015 (2017).

    Article  CAS  Google Scholar 

  6. Fumagalli, G., Stanton, S. & Bower, J. F. Recent methodologies that exploit C–C single-bond cleavage of strained ring systems by transition metal complexes. Chem. Rev. 117, 9404–9432 (2017).

    Article  CAS  Google Scholar 

  7. Dreis, A. & Douglas, C. in C–C Bond Activation (ed. Dong, G.) 85–110 (Springer, Berlin, 2014).

  8. Schleyer, P. V. R. & Pühlhofer, F. Recommendations for the evaluation of aromatic stabilization energies. Org. Lett. 4, 2873–2876 (2002).

    Article  CAS  Google Scholar 

  9. Santen, R. J., Brodie, H., Simpson, E. R., Siiteri, P. K. & Brodie, A. History of aromatase: saga of an important biological mediator and therapeutic target. Endocr. Rev. 30, 343–375 (2009).

    Article  CAS  Google Scholar 

  10. King, R. B. & Efraty, A. Pentamethylcyclopentadienyl derivatives of transition metals. II. Synthesis of pentamethylcyclopentadienyl metal carbonyls from 5-acetyl-1,2,3,4,5-pentamethylcyclopentadiene. J. Am. Chem. Soc. 94, 3773–3779 (1972).

    Article  CAS  Google Scholar 

  11. Crabtree, R. H., Dion, R. P., Gibboni, D. J., Mcgrath, D. V. & Holt, E. M. Carbon–carbon bond cleavage in hydrocarbons by iridium complexes. J. Am. Chem. Soc. 108, 7222–7227 (1986).

    Article  CAS  Google Scholar 

  12. Halcrow, M. A., Urbanos, F. & Chaudret, B. Aromatization of the B-ring of 5,7-dienyl steroids by the electrophilic ruthenium fragment “[Cp*Ru]+”. Organometallics 12, 955–957 (1993).

    Article  CAS  Google Scholar 

  13. Youn, S. W., Kim, B. S. & Jagdale, A. R. Pd-catalyzed sequential C–C bond formation and cleavage: evidence for an unexpected generation of arylpalladium(ii) species. J. Am. Chem. Soc. 134, 11308–11311 (2012).

    Article  CAS  Google Scholar 

  14. Smits, G., Audic, B., Wodrich, M. D., Corminboeuf, C. & Cramer, N. A β-Carbon elimination strategy for convenient in situ access to cyclopentadienyl metal complexes. Chem. Sci. 8, 7174–7179 (2017).

    Article  CAS  Google Scholar 

  15. Padwa, A. & Pearson, W. H. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products (John Wiley & Sons, New York, 2003).

    Google Scholar 

  16. Le Fevre, G. & Hamelin, J. Existence d’une forme N–H stable de pyrazoline-4 lors de l’aromatisation de pyrazolidines 3,3-disubstituées en pyrazole. Mécanisme de la réaction. Tetrahedron Lett. 19, 4503–4506 (1978).

    Article  Google Scholar 

  17. Tian, M., Shi, X., Zhang, X. & Fan, X. Synthesis of 4-acylpyrazoles from saturated ketones and hydrazones featured with multiple C(sp 3)–H bond functionalization and C–C bond cleavage and reorganization. J. Org. Chem. 82, 7363–7372 (2017).

    Article  CAS  Google Scholar 

  18. Xu, Y., Young, M. C. & Dong, G. Catalytic coupling between unactivated aliphatic C–H bonds and alkynes via a metal–hydride pathway. J. Am. Chem. Soc. 139, 5716–5719 (2017).

    Article  CAS  Google Scholar 

  19. Pan, S. & Shibata, T. Recent advances in iridium-catalyzed alkylation of C–H and N–H bonds. ACS Catal. 3, 704–712 (2013).

    Article  CAS  Google Scholar 

  20. Xia, Y., Lu, G., Liu, P. & Dong, G. Catalytic activation of carbon–carbon bonds in cyclopentanones. Nature 539, 546–550 (2016).

    Article  CAS  Google Scholar 

  21. Tsuji, J. & Ohno, K. Organic syntheses by means of noble metal compounds XXI. Decarbonylation of aldehydes using rhodium complex. Tetrahedron Lett. 6, 3969–3971 (1965).

    Article  Google Scholar 

  22. Murphy, S. K., Park, J.-W., Cruz, F. A. & Dong, V. M. Rh-catalyzed C–C bond cleavage by transfer hydroformylation. Science 347, 56–60 (2015).

    Article  ADS  CAS  Google Scholar 

  23. Zultanski, S. L. & Fu, G. C. Nickel-catalyzed carbon–carbon bond-forming reactions of unactivated tertiary alkyl halides: Suzuki arylations. J. Am. Chem. Soc. 135, 624–627 (2013).

    Article  CAS  Google Scholar 

  24. Mei, T.-S., Patel, H. H. & Sigman, M. S. Enantioselective construction of remote quaternary stereocentres. Nature 508, 340–344 (2014).

    Article  ADS  CAS  Google Scholar 

  25. Fessard, T. E. C., Andrews, S. P., Motoyoshi, H. & Carreira, E. M. Enantioselective preparation of 1,1-diarylethanes: aldehydes as removable steering groups for asymmetric synthesis. Angew. Chem. Int. Ed. 46, 9331–9334 (2007).

    Article  CAS  Google Scholar 

  26. Chu, L., Ohta, C., Zuo, Z. & Macmillan, D. W. C. Carboxylic acids as a traceless activation group for conjugate additions: a three-step synthesis of (±)-pregabalin. J. Am. Chem. Soc. 136, 10886–10889 (2014).

    Article  CAS  Google Scholar 

  27. Qin, T. et al. Nickel-catalyzed Barton decarboxylation and Giese reactions: a practical take on classic transforms. Angew. Chem. Int. Ed. 56, 260–265 (2017).

    Article  CAS  Google Scholar 

  28. Candeias, N. R., Paterna, R. & Gois, P. M. P. Homologation reaction of ketones with diazo compounds. Chem. Rev. 116, 2937–2981 (2016).

    Article  CAS  Google Scholar 

  29. Karrouchi, K. et al. Synthesis and pharmacological activities of pyrazole derivatives: a review. Molecules 23, 134 (2018).

    Article  Google Scholar 

  30. Hong, X. et al. Mechanism and selectivity of N-triflylphosphoramide catalyzed (3+ + 2) cycloaddition between hydrazones and alkenes. J. Am. Chem. Soc. 136, 13769–13780 (2014).

    Article  CAS  Google Scholar 

Download references


This project was supported by NIGMS (R01GM109054). Y.X. acknowledges financial support from a Charles H. Viol Fellowship and a William Rainey Harper Dissertation Fellowship from the University of Chicago and a Bristol-Myers Squibb Graduate Fellowship. P.Z. acknowledges a Joint PhD Student Scholarship 2016 from China Scholarship Council (file number 201603170182). P.L. thanks the NSF (CHE-1654122) for funding. Calculations were performed at the Center for Research Computing at the University of Pittsburgh. L. Deng is acknowledged for the donation of substrate 140. J. Zhu is acknowledged for conducting several control experiments.

Reviewer information

Nature thanks Vy Maria Dong and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations



Y.X. discovered the reaction. Y.X., P.Z., C.C.B. and G.D. conceived and conducted the experimental investigation. X.Q. and P.L. designed and conducted the density functional theory calculations. Y.X., X.Q., P.L. and G.D. wrote the manuscript. P.L. and G.D. directed the research.

Corresponding authors

Correspondence to Peng Liu or Guangbin Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Additional substrate scope for deconstructive pyrazole synthesis from ketones.

Ac, acetyl. MS, molecular sieves. aAll yields are isolated yields. bThe yield refers to the key C–C activation reaction using pre-formed hydrazone as the substrate. For detailed experimental procedures, see Supplementary Information.

Extended Data Fig. 2 Introducing pyrazoles into complex ketones via C–C cleavage.

aAll yields are isolated yields. bThe yield refers to the key C–C activation reaction using pre-formed hydrazone as the substrate. c15 mol% Ir catalyst and 15 mol% L1 were used. For detailed experimental procedures, see Supplementary Information.

Extended Data Fig. 3 Computational studies of the aromatization-driven C–C bond activation.

a, Free-energy profiles of the aromatization-driven C–C bond activation of dihydropyrazole 165. Calculations were performed at the M06-L/6-311+G(d,p)‒SDD/SMD(1,4-dioxane)//B3LYP/6-31G(d)‒SDD level of theory. The less favourable β-C elimination pathways with and without pyridine coordination (168-TS and 167-TS, respectively) are shown in blue. The NICS(1)zz aromaticity index was calculated at the B3LYP/6-311+G(d,p)‒SDD level of theory to describe the aromaticity of the pyrazole ring (highlighted in green) in 159, 160-TS and 161. The variation of NICS(1)zz indicates a substantial increase in aromaticity during the homolytic C–C bond cleavage. ΔG, change in Gibbs free energy; ΔH, change in enthalpy. b, Comparison between homolytic C–C bond cleavage of dihydropyrazole 165 and pyrazolidine 165ʹ (165ʹ without the driving force of aromatization). See Supplementary Information section 3.2.2 for details.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data Sections 1–5; see contents page for details.

Supplementary Data

This file contains the X-ray data.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Qi, X., Zheng, P. et al. Deacylative transformations of ketones via aromatization-promoted C–C bond activation. Nature 567, 373–378 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing