Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spatially resolved steady-state negative capacitance

An Author Correction to this article was published on 10 April 2019

This article has been updated

Abstract

Negative capacitance is a newly discovered state of ferroelectric materials that holds promise for electronics applications by exploiting a region of thermodynamic space that is normally not accessible1,2,3,4,5,6,7,8,9,10,11,12,13,14. Although existing reports of negative capacitance substantiate the importance of this phenomenon, they have focused on its macroscale manifestation. These manifestations demonstrate possible uses of steady-state negative capacitance—for example, enhancing the capacitance of a ferroelectric–dielectric heterostructure4,7,14 or improving the subthreshold swing of a transistor8,9,10,11,12. Yet they constitute only indirect measurements of the local state of negative capacitance in which the ferroelectric resides. Spatial mapping of this phenomenon would help its understanding at a microscopic scale and also help to achieve optimal design of devices with potential technological applications. Here we demonstrate a direct measurement of steady-state negative capacitance in a ferroelectric–dielectric heterostructure. We use electron microscopy complemented by phase-field and first-principles-based (second-principles) simulations in SrTiO3/PbTiO3 superlattices to directly determine, with atomic resolution, the local regions in the ferroelectric material where a state of negative capacitance is stabilized. Simultaneous vector mapping of atomic displacements (related to a complex pattern in the polarization field), in conjunction with reconstruction of the local electric field, identify the negative capacitance regions as those with higher energy density and larger polarizability: the domain walls where the polarization is suppressed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Steady-state negative capacitance.
Fig. 2: Identifying the regions of negative permittivity.
Fig. 3: Measurement of local electric field and polarization field using EMPAD-STEM.
Fig. 4: Local permittivity calculated using second-principles and phase-field simulations.

Data availability

All data supporting the findings of this study are available within the paper.

Change history

  • 10 April 2019

    In this Letter, the first name of author Bhagwati Prasad was misspelled Bhagawati. This error has been corrected online.

References

  1. 1.

    Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, Oxford, 2001).

    Book  Google Scholar 

  2. 2.

    Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

    ADS  CAS  Article  Google Scholar 

  3. 3.

    Salahuddin, S. & Datta, S. Can the subthreshold swing in a classical FET be lowered below 60 mV/decade? In 2008 IEEE International Electron Devices Meeting (IEDM) 1–4 (2008).

  4. 4.

    Khan, A. I. et al. Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl. Phys. Lett. 99, 113501 (2011).

    ADS  Article  Google Scholar 

  5. 5.

    Theis, T. N. & Solomon, P. M. It’s time to reinvent the transistor! Science 327, 1600–1601 (2010).

    ADS  CAS  Article  Google Scholar 

  6. 6.

    Gao, W. et al. Room-temperature negative capacitance in a ferroelectric–dielectric superlattice heterostructure. Nano Lett. 14, 5814–5819 (2014).

    ADS  CAS  Article  Google Scholar 

  7. 7.

    Appleby, D. J. et al. Experimental observation of negative capacitance in ferroelectrics at room temperature. Nano Lett. 14, 3864–3868 (2014).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  8. 8.

    Rusu, A., Salvatore, G., Jiménez, D. & Ionescu, A. M. Metal-ferroelectric-meta-oxide-semiconductor field effect transistor with sub-60mv/decade subthreshold swing and internal voltage amplification. In 2010 IEEE International Electron Devices Meeting (IEDM) 16.3.1–16.3.4 (2010).

  9. 9.

    Li, K.-S. et al. Sub-60mv-swing negative-capacitance finFET without hysteresis. In 2015 IEEE International Electron Devices Meeting (IEDM) 22.6.1–22.6.4 (2015).

  10. 10.

    Krivokapic, Z. et al. 14nm ferroelectric finFET technology with steep subthreshold slope for ultra low power applications. In 2017 IEEE International Electron Devices Meeting (IEDM) 15.1.1–15.1.4 (2017).

  11. 11.

    Jo, J. & Shin, C. Negative capacitance field effect transistor with hysteresis-free sub-60-mv/decade switching. IEEE Electron Device Lett. 37, 245–248 (2016).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    Kwon, D. et al. Improved subthreshold swing and short channel effect in FDSOI n-channel negative capacitance field effect transistors. IEEE Electron Device Lett. 39, 300–303 (2018).

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Khan, A. I. et al. Negative capacitance in a ferroelectric capacitor. Nat. Mater. 14, 182–186 (2015).

    ADS  CAS  Article  Google Scholar 

  14. 14.

    Zubko, P. et al. Negative capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016).

    ADS  CAS  Article  Google Scholar 

  15. 15.

    Cano, A. & Jiménez, D. Multidomain ferroelectricity as a limiting factor for voltage amplification in ferroelectric field-effect transistors. Appl. Phys. Lett. 97, 133509 (2010).

    ADS  Article  Google Scholar 

  16. 16.

    Karpov, D. et al. Three-dimensional imaging of vortex structure in a ferroelectric nanoparticle driven by an electric field. Nat. Commun. 8, 280 (2017).

    ADS  CAS  Article  Google Scholar 

  17. 17.

    Wang, J., Kamlah, M., Zhang, T.-Y., Li, Y. & Chen, L.-Q. Size-dependent polarization distribution in ferroelectric nanostructures: phase field simulations. Appl. Phys. Lett. 92, 162905 (2008).

    ADS  Article  Google Scholar 

  18. 18.

    Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016); corrigendum 534, 138 (2016).

    ADS  CAS  Article  Google Scholar 

  19. 19.

    Hong, Z. et al. Stability of polar vortex lattice in ferroelectric superlattices. Nano Lett. 17, 2246–2252 (2017).

    ADS  CAS  Article  Google Scholar 

  20. 20.

    Damodaran, A. R. et al. Phase coexistence and electric-field control of toroidal order in oxide superlattices. Nat. Mater. 16, 1003–1009 (2017).

    ADS  CAS  Article  Google Scholar 

  21. 21.

    Urban, K. W. Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321, 506 (2008).

    ADS  CAS  Article  Google Scholar 

  22. 22.

    Jia, C.-L. et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat. Mater. 6, 64–69 (2007).

    ADS  CAS  Article  Google Scholar 

  23. 23.

    Nguyen, K. X. et al. Reconstruction of polarization vortices by diffraction mapping of ferroelectric PbTiO3/SrTiO3 superlattice using a high dynamic range pixelated detector. Microsc. Microanal. 22, 472–473 (2016).

    Article  Google Scholar 

  24. 24.

    Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Watanabe, Y. in Ferroelectric Thin Films: Basic Properties and Device Physics for Memory Applications (eds Okuyama, M. & Ishibashi, Y.) 177–199 (Springer, Berlin, 2005).

  26. 26.

    Qi, Y. et al. Coexistence of ferroelectric vortex domains and charged domain walls in epitaxial BiFeO3 film on (110)O GdScO3 substrate. J. Appl. Phys. 111, 104117 (2012).

    ADS  Article  Google Scholar 

  27. 27.

    Lee, M. H. et al. Hidden antipolar order parameter and entangled Néel-type charged domain walls in hybrid improper ferroelectrics. Phys. Rev. Lett. 119, 157601 (2017).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Zhang, Q. et al. Direct observation of multiferroic vortex domains in YMnO3. Sci. Rep. 3, 2741 (2013).

    Article  Google Scholar 

  29. 29.

    Gruverman, A. et al. Vortex ferroelectric domains. J. Phys. Condens. Matter 20, 342201 (2008).

    Article  Google Scholar 

  30. 30.

    Sluka, T., Mokry, P. & Setter, N. Static negative capacitance of a ferroelectric nano-domain nucleus. Appl. Phys. Lett. 111, 152902 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    Lee, D. et al. Mixed Bloch-Néel-Ising character of 180 ferroelectric domain walls. Phys. Rev. B 80, 060102 (2009).

    ADS  Article  Google Scholar 

  32. 32.

    Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732 (2008).

    ADS  CAS  Article  Google Scholar 

  33. 33.

    Chang, S. C., Avci, U. E., Nikonov, D. E. & Young, I. A. A thermodynamic perspective of negative-capacitance field-effect transistors. IEEE J. Explor. Solid-State Comput. Devices Circuits 3, 56–64 (2017).

    ADS  Article  Google Scholar 

  34. 34.

    Kittel, C. Introduction to Solid State Physics (Wiley, Hoboken, 1966).

    MATH  Google Scholar 

  35. 35.

    Chen, L.-Q. Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J. Am. Ceram. Soc. 91, 1835–1844 (2008).

    CAS  Article  Google Scholar 

  36. 36.

    Li, Y. L., Hu, S. Y., Liu, Z. K. & Chen, L. Q. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater. 50, 395–411 (2002).

    CAS  Article  Google Scholar 

  37. 37.

    Chen, L. Q. & Shen, J. Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108, 147–158 (1998).

    ADS  CAS  Article  Google Scholar 

  38. 38.

    Tagantsev, A. K. Landau expansion for ferroelectrics: which variable to use? Ferroelectrics 375, 19–27 (2008).

    CAS  Article  Google Scholar 

  39. 39.

    Yue, Z. & Woo, C. H. Giant piezoelectric resistance in ferroelectric tunnel junctions. Nanotechnology 20, 075401 (2009).

    ADS  Article  Google Scholar 

  40. 40.

    Tagantsev, A. K. & Gerra, G. Interface-induced phenomena in polarization response of ferroelectric thin films. J. Appl. Phys. 100, 051607 (2006).

    ADS  Article  Google Scholar 

  41. 41.

    Wojdeł, J. C., Hermet, P., Ljunberg, M. P., Ghosez, Ph. & Íñiguez, J. First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides. J. Phys. Condens. Matter 25, 305401 (2013).

    Article  Google Scholar 

  42. 42.

    García-Fernández, P., Wojdeł, J. C., Íñiguez, J. & Junquera, J. Second-principles method including electron and lattice degrees of freedom. Phys. Rev. B 93, 195137 (2016).

    ADS  Article  Google Scholar 

  43. 43.

    Shafer, P. et al. Emergent chirality in the electric polarization texture of titanate superlattices. Proc. Natl Acad. Sci. USA 115, 915–920 (2018).

    ADS  CAS  Article  Google Scholar 

  44. 44.

    Landau, L. D. & Lifshitz, E. M. Electrodynamics of Continuous Media (Pergamon, Oxford, 1989).

    Google Scholar 

  45. 45.

    Stengel, M., Spaldin, N. A. & Vanderbilt, D. Electric displacement as the fundamental variable in electronic-structure calculations. Nat. Phys. 5, 304–308 (2009).

    CAS  Article  Google Scholar 

  46. 46.

    Stengel, M., Vanderbilt, D. & Spaldin, N. A. First-principles modeling of ferroelectric capacitors via constrained displacement field calculations. Phys. Rev. B 80, 224110 (2009).

    ADS  Article  Google Scholar 

  47. 47.

    Giustino, F. & Pasquarello, A. Theory of atomic-scale dielectric permittivity at insulator interfaces. Phys. Rev. B 71, 144104 (2005).

    ADS  Article  Google Scholar 

  48. 48.

    Bhide, V. G., Hegde, M. S. & Deshmukh, K. G. Ferroelectric properties of lead titanate. J. Am. Ceram. Soc. 51, 565–568 (1968).

    CAS  Article  Google Scholar 

  49. 49.

    Chaudhari, V. A. & Bichile, G. K. Synthesis, structural, and electrical properties of pure PbTiO3 ferroelectric ceramics. Smart Mater. Res. 2013, 147524 (2013).

    Google Scholar 

  50. 50.

    Sidorkin, S. et al. Dispersion of dielectric permittivity in thin ferroelectric lead titanate films. Solid State Phenom. 115, 233-238 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the AFOSR YIP programme, LEAST (one of the SRC/DARPA supported centres within the STARNET initiative), ASCENT (one of the SRC/DARPA supported centres within the JUMP initiative), and the Berkeley Center for Negative Capacitance Transistors and the Multicampus Research Programs and Initiatives (MRPI) of the University of California. Electron microscopy experiments and equipment were supported by the Cornell Center for Materials Research, through the National Science Foundation MRSEC programme, award DMR 1719875. The work at Penn State was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award FG02-07ER46417. Z.J.H. acknowledges support from NSF-MRSEC grant number DMR-1420620 and NSF-MWN grant number DMR-1210588. R.R. and S.D. acknowledge support from the Gordon and Betty Moore Foundation’s EPiQS Initiative, under grant GBMF5307. R.R. also acknowledges funding from the Army Research Office. J.I. acknowledges support from the Luxembourg National Research Fund under grant C15/MS/10458889 NEWALLS. P.G.-F. and J.J. acknowledge financial support from the Spanish Ministry of Economy and Competitiveness through grant number FIS2015-64886-C5-2-P, and P.G.-F. acknowledges support from Ramón y Cajal grant no. RyC-2013-12515.

Reviewer information

Nature thanks D. Jiménez, J. Rondinelli and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

A.K.Y., K.X.N., D.A.M., R.R. and S.S. designed the research. A.K.Y. performed synthesis and characterization of superlattice films. K.X.N. performed polarization and electric field measurements on superlattice films using EMPAD-STEM. C.T.N. performed atomic-resolution polar displacement mapping on superlattice films using STEM. Z.H. and L.-Q.C. performed phase-field calculations for these superlattice structures. P.G.-F., P.A.-P., J.I. and J.J. performed second-principles calculations for these superlattice structures. D.K., S.C., S.D. and B.P. performed current–voltage measurements. A.K.Y., S.S., C.H., R.R., K.X.N., C.T.N., A.I.K., Z.H., P.G.-F., P.A.-P., J.J., L.-Q.C., D.A.M. and J.I. discussed results and co-wrote the manuscript. S.S. performed the overall supervision of the work. All authors contributed to the discussions and manuscript preparation.

Corresponding author

Correspondence to Sayeef Salahuddin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Electron spectrometry of the superlattice.

a, Schematic of the electron microscopy pixel array detector (EMPAD) placed in the diffraction plane to record the full angular scattering distribution from an electron beam focused onto a sample. b, ADF image of the (PbTiO3)12/(SrTiO3)12 superlattice along the [010]pc zone axis. c, d, CBED pattern from the PbTiO3 layer (c) and from the SrTiO3 layer (d).

Extended Data Fig. 2 Electric field and polarization field extracted from TEM measurements.

Left column, x and z components of the electric field, Ex (top) and Ez (bottom); right column, x and z components of the polarization field, Px (top) and Pz (bottom). Ex,z and Px,z are extracted from the 4D STEM measurements of a PbTiO3 multilayer in Extended Data Fig. 1, as discussed in Methods section ‘EMPAD’. The electric field is determined from the center-of-mass shift of the central disk (red disk in Extended Data Fig. 1). The polarization is determined from the center of mass of the Friedel pairs (orange in Extended Data Fig. 1). Field of view, 12 nm.

Extended Data Fig. 3 Vector maps of the electric field and polarization field calculated from phase-field simulations.

Top, polarization field; bottom, electric field.

Extended Data Fig. 4 Illustration of the grids used to obtain the local dielectric constant.

The electrostatic potential is computed at the points of a regular real space grid (blue dots). Then the local electric field components along x and z are computed from finite-difference derivatives at the points of two extra staggered regular grids (green and red points).

Extended Data Fig. 5 Second-principles calculations of the 2D distribution of the inverse of the dielectric constant and the susceptibility.

a, The inverse of the dielectric constant is colour-coded (key at right); b, the susceptibility is colour coded (key at right). Both a and b are overlaid by the polarization vectors, and the green dashed line in both panels shows the line cut used to produce Fig. 4.

Extended Data Fig. 6 Second-principles calculation of the local energy density map overlaid with polarization vectors.

Note that within the PbTiO3 layer (the top where the polarization vectors can be seen more clearly), the core region has a higher energy than the other regions (see colour key at right, in atomic units, a.u.). The core regions are also where the local permittivity is negative. The local energy in the SrTiO3 layer (mostly red) is quite uniform and is equal to the reference energy. Note that the energies shown here are the differences with respect to the reference structure that corresponds to the cubic centrosymmetric phase.

Extended Data Fig. 7 Determination of normalized G.

a, Plot of Ez versus Dz determined from looking at experimentally measured, varying polarization across a vortex and plotting the corresponding electric field (see Fig. 3c). b, Normalized G estimated from a using \(G=\int {E}_{z}{\rm{d}}{D}_{z}\).

Extended Data Fig. 8 Estimation of local permittivity.

Top, z components of polarization (Pz) and of electric field (Ez), plotted against X (position along the lattice). Bottom, permittivity estimated as described in Methods. Permittivity is negative in the regions around the core.

Extended Data Fig. 9 Experimentally measured dielectric constant as a function of voltage.

In red, data are shown for a 100 nm (SrTiO3)12/(PbTiO3)12 superlattice where the existence of vortex states was confirmed. In blue, for comparison, the permittivity (dielectric constant) of a 50 nm SrTiO3 sample is plotted (note that the combined thickness of SrTiO3 in the superlattice is also 50 nm). The black dashed line shows the threshold that needs to be surpassed for capacitance enhancement caused by a stabilized negative capacitance in the PbTiO3 layer. An enhancement in permittivity of almost 3.7 times is observed compared to this threshold.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.K., Nguyen, K.X., Hong, Z. et al. Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019). https://doi.org/10.1038/s41586-018-0855-y

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing