Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Signatures of a jet cocoon in early spectra of a supernova associated with a γ-ray burst


Long γ-ray bursts are associated with energetic, broad-lined, stripped-envelope supernovae1,2 and as such mark the death of massive stars. The scarcity of such events nearby and the brightness of the γ-ray burst afterglow, which dominates the emission in the first few days after the burst, have so far prevented the study of the very early evolution of supernovae associated with γ-ray bursts3. In hydrogen-stripped supernovae that are not associated with γ-ray bursts, an excess of high-velocity (roughly 30,000 kilometres per second) material has been interpreted as a signature of a choked jet, which did not emerge from the progenitor star and instead deposited all of its energy in a thermal cocoon4. Here we report multi-epoch spectroscopic observations of the supernova SN 2017iuk, which is associated with the γ-ray burst GRB 171205A. Our spectra display features at extremely high expansion velocities (around 115,000 kilometres per second) within the first day after the burst5,6. Using spectral synthesis models developed for SN 2017iuk, we show that these features are characterized by chemical abundances that differ from those observed in the ejecta of SN 2017iuk at later times. We further show that the high-velocity features originate from the mildly relativistic hot cocoon that is generated by an ultra-relativistic jet within the γ-ray burst expanding and decelerating into the medium that surrounds the progenitor star7,8. This cocoon rapidly becomes transparent9 and is outshone by the supernova emission, which starts to dominate the emission three days after the burst.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Multi-wavelength evolution of the GRB 171205A/SN 2017iuk emission.
Fig. 2: Optical and X-ray spectral modelling of the early emission of SN 2017iuk.
Fig. 3: Evolution of the ejecta velocities.
Fig. 4: Chemical composition of the supernova ejecta.

Data availability

The optical spectra obtained with GTC/OSIRIS and VLT/X-shooter are available in the GRBspec repository at The optical spectra obtained with VLT/X-shooter are also available in the WISEREP repository at The optical data shown in the plots and tables and the Python codes used for the data analysis are available from the corresponding author on reasonable request. The entire photometric dataset is available at Swift XRT and UVOT data are public ( The open-source code TARDIS used for the spectrum synthesis is available at


  1. Galama, T. J. et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Hjorth, J. et al. A very energetic supernova associated with the γ-ray burst of 29 March 2003. Nature 423, 847–850 (2003).

    Article  ADS  CAS  Google Scholar 

  3. Cano, Z., Wang, S.-Q., Dai, Z.-G. & Wu, X.-F. The observer’s guide to the gamma-ray burst supernova connection. Adv. Astron. 2017, 8929054 (2017).

    Article  ADS  Google Scholar 

  4. Piran, T., Nakar, E., Mazzali, P. & Pian, E. Relativistic jets in core collapse supernovae. Preprint at (2017).

  5. Izzo, L. et al. GRB 171205A: VLT/X-shooter optical counterpart and spectroscopic observations. GCN Circ. 22180 (2017).

  6. de Ugarte Postigo, A. et al. GRB 171205A: detection of the emerging SN. GCN Circ. 22204 (2017).

  7. Bromberg, O., Nakar, E., Piran, T. & Sari, R. The propagation of relativistic jets in external media. Astrophys. J. 740, 100 (2011).

    Article  ADS  Google Scholar 

  8. Harrison, R., Gottlieb, O. & Nakar, E. Numerically calibrated model for propagation of a relativistic unmagnetized jet in dense media. Mon. Not. R. Astron. Soc. 477, 2128–2140 (2018).

    Article  ADS  Google Scholar 

  9. Ramirez-Ruiz, E., Celotti, A. & Rees, M. J. Events in the life of a cocoon surrounding a light, collapsar jet. Mon. Not. R. Astron. Soc. 337, 1349–1356 (2002).

    Article  ADS  CAS  Google Scholar 

  10. Barthelmy, S. D. et al. GRB 171205A: Swift-BAT refined analysis. GCN Circ. 22184 (2017).

  11. Perley, D. A. & Taggart, K. GRB 171205A: host galaxy photometric properties. GCN Circ. 22194 (2017).

  12. Vergani, S. et al. Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of LGRBs. I. Stellar mass at z ≤ 1. Astron. Astrophys. 581, A102 (2015).

    Article  Google Scholar 

  13. Campana, S. et al. Possible blackbody component in the X-ray spectrum of GRB171205A. GCN Circ. 22191 (2017).

  14. Campana, S. et al. The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 442, 1008–1010 (2006).

    Article  ADS  CAS  Google Scholar 

  15. Starling, R. L. C., Page, K., Pe’er, A., Beardmore, A. & Osborne, J. P. A search for thermal X-ray signatures in gamma-ray bursts – I. Swift bursts with optical supernovae. Mon. Not. R. Astron. Soc. 427, 2950–2964 (2012).

    Article  ADS  Google Scholar 

  16. Bufano, F. et al. The highly energetic expansion of SN 2010bh associated with GRB 100316D. Astrophys. J. 753, 67 (2012).

    Article  ADS  Google Scholar 

  17. Modjaz, M. et al. Early-time photometry and spectroscopy of the fast evolving SN 2006aj associated with GRB 060218. Astrophys. J. 645, L21–L24 (2006).

    Article  ADS  CAS  Google Scholar 

  18. Xu, D. et al. Discovery of the broad-lined type Ic SN 2013cq associated with the very energetic GRB 130427A. Astrophys. J. 776, 98 (2013).

    Article  ADS  Google Scholar 

  19. Modjaz, M., Liu, Y. Q., Bianco, F. B. & Graur, O. The spectral SN-GRB connection: systematic spectral comparisons between type Ic supernovae and broad-lined type Ic supernovae with and without gamma-ray bursts. Astrophys. J. 832, 108 (2016).

    Article  ADS  Google Scholar 

  20. Iwamoto, K. et al. A hypernova model for the supernova associated with the γ-ray burst of 25 April 1998. Nature 395, 672–674 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Nakamura, T. et al. Explosive nucleosynthesis in hypernovae. Astrophys. J. 555, 880–899 (2001).

    Article  ADS  CAS  Google Scholar 

  22. Matzner, C. D. & McKee, C. F. The expulsion of stellar envelopes in core-collapse supernovae. Astrophys. J. 510, 379–403 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Arnett, W. D. Type I supernovae. I – analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Maeda, K. et al. Explosive nucleosynthesis in aspherical hypernova explosions and late-time spectra of SN1998bw. Astrophys. J. 565, 405–412 (2002).

    Article  ADS  CAS  Google Scholar 

  25. Maeda, K. & Nomoto, K. Bipolar supernova explosions: nucleosynthesis and implications for abundances in extremely metal-poor stars. Astrophys. J. 598, 1163–1200 (2003).

    Article  ADS  CAS  Google Scholar 

  26. Yoon, S.-C. & Langer, N. Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts. Astron. Astrophys. 443, 643–648 (2005).

    Article  ADS  CAS  Google Scholar 

  27. Moriya, T. J., Sanyal, D. & Langer, N. Extended supernova shock breakout signals from inflated stellar envelopes. Astron. Astrophys. 575, L10 (2015).

    Article  ADS  Google Scholar 

  28. Suzuki, A. & Maeda, K. Broad-band emission properties of central engine-powered supernova ejecta interacting with a circumstellar medium. Mon. Not. R. Astron. Soc. 478, 110–125 (2018).

    Article  ADS  Google Scholar 

  29. Nakar, E. & Piran, T. The observable signatures of GRB cocoons. Astrophys. J. 834, 28 (2017).

    Article  ADS  Google Scholar 

  30. De Colle, F., Lu, W., Kumar, P., Ramirez-Ruiz, E. & Smoot, G. Thermal and non-thermal emission from the cocoon of a gamma-ray burst jet. Mon. Not. R. Astron. Soc. 478, 4553–4564 (2018).

    Article  ADS  Google Scholar 

  31. Gehrels, N. et al. The Swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004).

    Article  ADS  CAS  Google Scholar 

  32. Greiner, J. et al. GROND – a 7-channel imager. Publ. Astron. Soc. Pacif. 120, 405–424 (2008).

    Article  ADS  Google Scholar 

  33. Roming, P. W. A. et al. The Swift ultra-violet/optical telescope. Space Sci. Rev. 120, 95–142 (2005).

    Article  ADS  Google Scholar 

  34. Poole, T. S. et al. Photometric calibration of the Swift ultraviolet/optical telescope. Mon. Not. R. Astron. Soc. 383, 627–645 (2008).

    Article  ADS  CAS  Google Scholar 

  35. Sari, R., Piran, T. & Narayan, R. Spectra and light curves of gamma-ray burst afterglows. Astrophys. J. 497, L17–L20 (1998).

    Article  ADS  Google Scholar 

  36. Šimon, V., Hudec, R., Pizzichini, G. & Masetti, N. Colors and luminosities of the optical afterglows of the gamma-ray bursts. Astron. Astrophys. 377, 450–461 (2001).

    Article  ADS  Google Scholar 

  37. Granot, J., Piran, T. & Sari, R. Images, light curves and spectra of GRB afterglow. Astron. Astrophys. Suppl. Ser. 138, 541–542 (1999).

    Article  ADS  Google Scholar 

  38. Arnaud, K. A. XSPEC: the first ten years. ASP Conf. Ser. 101, 17–20 (1996).

    ADS  Google Scholar 

  39. Schady, P. et al. Dust and metal column densities in gamma-ray burst host galaxies. Mon. Not. R. Astron. Soc. 401, 2773–2792 (2010).

    Article  ADS  CAS  Google Scholar 

  40. Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).

    Article  ADS  Google Scholar 

  41. Willingale, R., Starling, R. L. C., Beardmore, A. P., Tanvir, N. R. & O’Brien, P. T. Calibration of X-ray absorption in our Galaxy. Mon. Not. R. Astron. Soc. 431, 394–404 (2013).

    Article  ADS  Google Scholar 

  42. Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256 (1989).

    Article  ADS  CAS  Google Scholar 

  43. Pei, Y. C. Interstellar dust from the Milky Way to the Magellanic clouds. Astrophys. J. 395, 130–139 (1992).

    Article  ADS  Google Scholar 

  44. Poznanski, D., Prochaska, J. X. & Bloom, J. S. An empirical relation between sodium absorption and dust extinction. Mon. Not. R. Astron. Soc. 426, 1465–1474 (2012).

    Article  ADS  CAS  Google Scholar 

  45. Osterbrock, D. E. & Ferland, G. J. (eds) Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (University Science Books, Sausalito, 2006).

    Google Scholar 

  46. Wilms, J., Allen, A. & McCray, R. On the absorption of X-rays in the interstellar medium. Astrophys. J. 542, 914–924 (2000).

    Article  ADS  CAS  Google Scholar 

  47. de Ugarte Postigo, A. et al. The luminous host galaxy, faint supernova and rapid afterglow rebrightening of GRB 100418A. Preprint at (2018).

  48. Clocchiatti, A., Suntzeff, N. B., Covarrubias, R. & Candia, P. The ultimate light curve of SN 1998bw/GRB 980425. Astron. J. 141, 163 (2011).

    Article  ADS  Google Scholar 

  49. Ferrero, P. et al. The GRB 060218/SN 2006aj event in the context of other gamma-ray burst supernovae. Astron. Astrophys. 457, 857–864 (2006).

    Article  ADS  CAS  Google Scholar 

  50. Hjorth, J. The supernova-gamma-ray burst-jet connection. Phil. Trans. R. Soc. Lond. A 371, 20120275 (2013).

    Article  ADS  Google Scholar 

  51. Valenti, S. et al. The broad-lined type Ic supernova 2003jd. Mon. Not. R. Astron. Soc. 383, 1485–1500 (2008).

    Article  ADS  CAS  Google Scholar 

  52. Cano, Z. et al. GRB 161219B/SN 2016jca: a low-redshift gamma-ray burst supernova powered by radioactive heating. Astron. Astrophys. 605, A107 (2017).

    Article  Google Scholar 

  53. Dessart, J. A. et al. Radiative-transfer models for explosions from rotating and non-rotating single WC stars. Implications for SN 1998bw and LGRB/SNe. Astron. Astrophys. 603, A51 (2017).

    Article  Google Scholar 

  54. Nousek, L. et al. Evidence for a canonical gamma-ray burst afterglow light curve in the Swift XRT data. Astrophys. J. 642, 389–400 (2006).

    Article  ADS  CAS  Google Scholar 

  55. Perley, D. A., Schulze, S. & de Ugarte Postigo, A. GRB 171205A: ALMA observations. GCN Circ. 22252 (2017).

  56. Patat, F. et al. The metamorphosis of SN 1998bw. Astrophys. J. 555, 900–917 (2001).

    Article  ADS  CAS  Google Scholar 

  57. Clocchiatti, A. et al. The type IC SN 1990B in NGC 4568. Astrophys. J. 553, 886–896 (2001).

    Article  ADS  CAS  Google Scholar 

  58. Mazzali, P. A. et al. The type Ic hypernova SN 2002ap. Astrophys. J. 572, L61–L65 (2002).

    Article  ADS  CAS  Google Scholar 

  59. Kerzendorf, W. E. & Sim, S. A. A spectral synthesis code for rapid modelling of supernovae. Mon. Not. R. Astron. Soc. 440, 387–404 (2014).

    Article  ADS  CAS  Google Scholar 

  60. Lucy, L. B. Nonthermal excitation of helium in type Ib supernovae. Astrophys. J. 383, 308–313 (1991).

    Article  ADS  CAS  Google Scholar 

  61. Mazzali, P. A., Iwamoto, K. & Nomoto, K. A spectroscopic analysis of the energetic type Ic hypernova SN 1997EF. Astrophys. J. 545, 407–419 (2000).

    Article  ADS  CAS  Google Scholar 

  62. Ashall, C. et al. GRB 161219B-SN 2016jca: a powerful stellar collapse. Preprint at (2017).

  63. MacFadyen, A. I. & Woosley, S. E. Collapsars: gamma-ray bursts and explosions in “failed supernovae”. Astrophys. J. 524, 262–289 (1999).

    Article  ADS  CAS  Google Scholar 

  64. Metzger, B. D. et al. The diversity of transients from magnetar birth in core collapse supernovae. Mon. Not. R. Astron. Soc. 454, 3311–3316 (2015).

    Article  ADS  CAS  Google Scholar 

  65. Hatano, K. et al. Ion signatures in supernova spectra. Astrophys. J. Suppl. Ser. 121, 233–246 (1999).

    Article  ADS  CAS  Google Scholar 

Download references


We acknowledge A. S. Esposito for the rendering of the figures presented in this work. L.I. acknowledges support from funding associated with Juan de la Cierva Incorporacion fellowship IJCI-2016-30940. L.I., A.d.U.P., C.C.T. and D.A.K. acknowledge support from the Spanish research project AYA2017-89384-P. A.d.U.P. acknowledges support from funding associated with Ramón y Cajal fellowship RyC-2012-09975. C.C.T. acknowledges support from funding associated with Ramón y Cajal fellowship RyC-2012-09984. D.A.K. acknowledges support from funding associated with Juan de la Cierva Incorporacion fellowship IJCI-2015-26153. K.M. acknowledges support from JSPS Kakenhi grants (18H05223, 18H04585 and 17H02864). S. Schmidl acknowledges support from grant DFG Klose 766/16-3 and discussions with S. Klose. R.L.C.S. acknowledges funding from STFC. M.J.M. acknowledges the support of the National Science Centre, Poland, through POLONEZ grant 2015/19/P/ST9/04010; this project has received funding from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement number 665778. R.S.-R. acknowledges support from ASI (Italian Space Agency) through contract number 2015-046-R.0 and from the European Union’s Horizon 2020 programme under the AHEAD project (grant agreement number 654215). The Cosmic Dawn Center is funded by the DNRF. J.H. was supported by a VILLUM FONDEN Investigator grant (project number 16599). G.L. was supported by a research grant from VILLUM FONDEN (project number 19054). K.E.H. acknowledges support by a Project Grant (162948–051) from The Icelandic Research fund. J.J. and L.K. acknowledge support from NOVA and NWO-FAPESP grant for advanced instrumentation in astronomy.

Author information

Authors and Affiliations



L.I., K.M., A.d.U.P., D.A.K., M.D.V., P.S. and C.C.T. wrote the manuscript. L.I., D.A.K. and A.d.U.P. coordinated the follow-up efforts. L.I., main coordination, X-ray and optical data reduction, spectral analysis and SED interpretation. A.d.U.P., GTC spectroscopic data reduction and analysis, discovery of the emerging supernova and the high-velocity components. K.M. and A.S., spectral synthesis modelling and interpretation. A.S.C., supernova data analysis and interpretation. N.R.T., C.C.T. and D.A.K., principal investigators of the VLT and GTC afterglow/GRB-associated supernova proposals with which all spectra were obtained. M.J.M., T.M., K.K., T.K. and M.K., planning and analysis of the RBT/PST2 observations. J.S. and J.J., VLT data reduction and analysis. K.E.H. and D.B.M. led and planned the NOT observations. P.S. and S. Schmidl contributed to UVOT and GROND data analysis and interpretation. R.L.C.S. contributed to X-ray data analysis and interpretation. D.S., K.U. and R.L.C.S. planned and analysed the GOTO observations. L.I., A.d.U.P., D.A.K., C.C.T., M.D.V., K.B., J.B., S. Campana, Z.C., S. Covino, J.P.U.F., D.H.H., K.E.H., J.H., L.K., C.K., G.L., A.J.L., D.B.M., G.P., S.P., A.R., R.S.-R., S. Schulze, D.S., N.R.T., S.D.V. and K.W. contributed to observation strategy and planning for X-shooter observations. All authors contributed to the discussion and presentation of the results and reviewed the manuscript.

Corresponding author

Correspondence to L. Izzo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Early evolution of the colour index.

The evolution of the ub, bv, uvw1 − u and uvw2 − uvw1 colour indices, computed from UVOT data in the first 18 days after the GRB trigger. Error bars represent 1 s.d.

Extended Data Fig. 2 Modelling the SEDs.

SEDs for the epochs at TSED1 = 0.003 days and TSED2 = 0.06 days (top), TSED3 = 0.17 days and TSED4 = 0.55 days (middle), and TSED5 = 0.97 days and TSED6 = 1.97 days (bottom). All datasets use photometric data points obtained with Swift UVOT for the low-energy part of the spectrum (red). Error bars represent 1 s.d. Faint dotted lines represent the entire spectral model used, in flux density (Fv) units. The SED is complemented with VLT/X-shooter at day 0.06 (green) and GTC/OSIRIS spectra at day 0.97 and day 1.97 (red), whereas for the X-ray energy range we built specific Swift XRT spectra (black). An additional spectrum is shown in the top-left panel (black data) together with the best-fit results obtained for the Swift windowed-timing (WT) mode spectrum computed at 0.003 days using a black body plus power-law spectral model (solid line).

Extended Data Fig. 3 Evolution of the light curve of SN 2017iuk.

Evolution of the BVRCIC magnitude of SN 2017iuk as observed with the RBT/PST2 telescope. Coloured curves represent the interpolation functions used to estimate the peak brightness. Error bars represent 1 s.d.

Extended Data Fig. 4 SN 2017iuk versus SN 1998bw and SN 2006aj.

Evolution of the V (green) and RC (red) absolute magnitudes for SN 2017iuk (symbols), as observed from the NOT, OSN, RBT/PST2, GOTO and smaller telescopes (iTelescope, OASDG). The evolution in the first 30 days of SN 1998bw (dashed curves) and SN 2006aj (dot-dashed curves) are also shown, considering a common rest-frame time interval. Error bars represent 1 s.d.

Extended Data Fig. 5 Spectrum of GRB 171205A/ SN 2017iuk obtained 1.5 h after the GRB detection.

This spectrum was obtained with VLT/X-shooter in the range 3,200–19,000 Å. The inset shows the UVB arm (3,200–5,500 Å), where the emission excess at wavelengths up to 4,000 Å and a possible absorption feature at about 3,700 Å are shown.

Extended Data Fig. 6 Spectroscopic evolution of SN 2017iuk in the NIR.

Grey regions indicate telluric features in the spectra. The possible He i λ10830/Mg ii λ10914 feature is visible in the day-21 spectrum, while the Ca ii triplet shows a P-Cygni profile at bluer wavelengths.

Extended Data Table 1 Log of the spectroscopic observations
Extended Data Table 2 Fit results of the SEDs built from GROND, Swift UVOT and XRT data
Extended Data Table 3 Model parameters
Extended Data Table 4 Elemental abundances obtained from the synthesis model as a function of the expansion velocity

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Izzo, L., de Ugarte Postigo, A., Maeda, K. et al. Signatures of a jet cocoon in early spectra of a supernova associated with a γ-ray burst. Nature 565, 324–327 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing