Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electromagnetic and gravitational responses of photonic Landau levels

Abstract

Topology has recently become a focus in condensed matter physics, arising in the context of the quantum Hall effect and topological insulators. In both of these cases, the topology of the system is defined through bulk properties (‘topological invariants’) but detected through surface properties. Here we measure three topological invariants of a quantum Hall material—photonic Landau levels in curved space—through local electromagnetic and gravitational responses of the bulk material. Viewing the material as a many-port circulator, the Chern number (a topological invariant) manifests as spatial winding of the phase of the circulator. The accumulation of particles near points of high spatial curvature and the moment of inertia of the resultant particle density distribution quantify two additional topological invariants—the mean orbital spin and the chiral central charge. We find that these invariants converge to their global values when probed over increasing length scales (several magnetic lengths), consistent with the intuition that the bulk and edges of a system are distinguishable only for sufficiently large samples (larger than roughly one magnetic length). Our experiments are enabled by applying quantum optics tools to synthetic topological matter (here twisted optical resonators). Combined with advances in Rydberg-mediated photon collisions, our work will enable precision characterization of topological matter in photon fluids.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Topological invariants and their associated observables.
Fig. 2: Holographic reconstruction of band projectors.
Fig. 3: Measurement of the Chern number in real space.
Fig. 4: Measuring the Chern number.
Fig. 5: Response to manifold curvature.

Data availability

The raw data the support the findings of this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Chiu, C.-K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

    ADS  Article  Google Scholar 

  2. 2.

    Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

    ADS  CAS  Article  Google Scholar 

  3. 3.

    Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  4. 4.

    Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    Hatsugai, Y. Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697–3700 (1993).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  6. 6.

    Avron, J. E., Seiler, R. & Zograf, P. G. Viscosity of quantum Hall fluids. Phys. Rev. Lett. 75, 697–700 (1995).

    ADS  CAS  Article  Google Scholar 

  7. 7.

    Klevtsov, S. & Wiegmann, P. Geometric adiabatic transport in quantum Hall states. Phys. Rev. Lett. 115, 086801 (2015).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  8. 8.

    Can, T., Chiu, Y. H., Laskin, M. & Wiegmann, P. Emergent conformal symmetry and geometric transport properties of quantum Hall states on singular surfaces. Phys. Rev. Lett. 117, 266803 (2016).

    ADS  CAS  Article  Google Scholar 

  9. 9.

    Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    ADS  CAS  Article  Google Scholar 

  10. 10.

    Duca, L. et al. An Aharonov-Bohm interferometer for determining Bloch band topology. Science 347, 288–292 (2015).

    ADS  CAS  Article  Google Scholar 

  11. 11.

    Fläschner, N. et al. Experimental reconstruction of the berry curvature in a floquet bloch band. Science 352, 1091–1094 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    Li, T. et al. Bloch state tomography using Wilson lines. Science 352, 1094–1097 (2016).

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162–166 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Thouless, D. J. Quantization of particle transport. Phys. Rev. B 27, 6083–6087 (1983).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  15. 15.

    Nakajima, S. et al. Topological Thouless pumping of ultracold fermions. Nat. Phys. 12, 296–300 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Lohse, M., Schweizer, C., Zilberberg, O., Aidelsburger, M. & Bloch, I. A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice. Nat. Phys. 12, 350–354 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Tarnowski, M. et al. Characterizing topology by dynamics: Chern number from linking number. Preprint at https://arxiv.org/abs/1709.01046 (2018).

  18. 18.

    Banerjee, M. et al. Observed quantization of anyonic heat flow. Nature 545, 75–79 (2017).

    ADS  CAS  Article  Google Scholar 

  19. 19.

    Mittal, S., Ganeshan, S., Fan, J., Vaezi, A. & Hafezi, M. Measurement of topological invariants in a 2D photonic system. Nat. Photon. 10, 180–183 (2016).

    ADS  CAS  Article  Google Scholar 

  20. 20.

    Ningyuan, F., Owens, C., Sommer, A., Schuster, D. & Simon, J. Time- and site-resolved dynamics in a topological circuit. Phys. Rev. X 5, 021031 (2015).

    Google Scholar 

  21. 21.

    Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    ADS  CAS  Article  Google Scholar 

  22. 22.

    Owens, C. et al. Quarter-flux hofstadter lattice in a qubit-compatible microwave cavity array. Phys. Rev. A 97, 013818 (2018).

    ADS  Article  Google Scholar 

  23. 23.

    Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    ADS  CAS  Article  Google Scholar 

  24. 24.

    Tai, E. et al. Microscopy of the interacting Harper–Hofstadter model in the two-body limit. Nature 546, 519–523 (2017).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Stuhl, B. K., Lu, H.-I., Aycock, L. M., Genkina, D. & Spielman, I. B. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  26. 26.

    Ma, R., Owens, C., LaChapelle, A., Schuster, D. I. & Simon, J. Hamiltonian tomography of photonic lattices. Phys. Rev. A 95, 062120 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Lim, H.-T., Togan, E., Kroner, M., Miguel-Sanchez, J. & Imamoğlu, A. Electrically tunable artificial gauge potential for polaritons. Nat. Commun. 8, 14540 (2017).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Schine, N., Ryou, A., Gromov, A., Sommer, A. & Simon, J. Synthetic landau levels for photons. Nature 534, 671–675 (2016).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  CAS  Article  Google Scholar 

  30. 30.

    Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  32. 32.

    Zaletel, M. P., Mong, R. S. K. & Pollmann, F. Topological characterization of fractional quantum Hall ground states from microscopic Hamiltonians. Phys. Rev. Lett. 110, 236801 (2013).

    ADS  Article  Google Scholar 

  33. 33.

    Kane, C. L. & Fisher, M. P. A. Quantized thermal transport in the fractional quantum Hall effect. Phys. Rev. B 55, 15832–15837 (1997).

    ADS  CAS  Article  Google Scholar 

  34. 34.

    Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000).

    ADS  CAS  Article  Google Scholar 

  35. 35.

    Abanov, A. G. & Gromov, A. Electromagnetic and gravitational responses of two-dimensional noninteracting electrons in a background magnetic field. Phys. Rev. B 90, 014435 (2014).

    ADS  Article  Google Scholar 

  36. 36.

    Gromov, A., Cho, G. Y., You, Y., Abanov, A. G. & Fradkin, E. Framing anomaly in the effective theory of the fractional quantum Hall effect. Phys. Rev. Lett. 114, 016805 (2015).

    ADS  Article  Google Scholar 

  37. 37.

    Mitchell, N., Nash, L., Hexner, D., Turner, A. & Irvine, W. Amorphous topological insulators constructed from random point sets. Nat. Phys. 14, 380–385 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Kohmoto, M. Topological invariant and the quantization of the Hall conductance. Ann. Phys. 160, 343–354 (1985).

    ADS  MathSciNet  Article  Google Scholar 

  39. 39.

    Brouder, C., Panati, G., Calandra, M., Mourougane, C. & Marzari, N. Exponential localization of Wannier functions in insulators. Phys. Rev. Lett. 98, 046402 (2007).

    ADS  Article  Google Scholar 

  40. 40.

    Wen, X. G. Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. Phys. Rev. B 41, 12838–12844 (1990).

    ADS  CAS  Article  Google Scholar 

  41. 41.

    Wen, X. G. & Zee, A. Shift and spin vector: new topological quantum numbers for the Hall fluids. Phys. Rev. Lett. 69, 953–956 (1992).

    ADS  CAS  Article  Google Scholar 

  42. 42.

    Klevtsov, S. Random normal matrices, Bergman kernel and projective embeddings. J. High Energy Phys. 1, 133 (2014).

    ADS  MathSciNet  Article  Google Scholar 

  43. 43.

    Banerjee, M. et al. Observation of half-integer thermal Hall conductance. Nature 559, 205–210 (2018).

    ADS  CAS  Article  Google Scholar 

  44. 44.

    Cooper, N. R., Wilkin, N. K. & Gunn, J. M. F. Quantum phases of vortices in rotating Bose-Einstein condensates. Phys. Rev. Lett. 87, 120405 (2001).

    ADS  CAS  Article  Google Scholar 

  45. 45.

    Regnault, N. & Jolicoeur, Th. Quantum Hall fractions in rotating Bose-Einstein condensates. Phys. Rev. Lett. 91, 030402 (2003).

    ADS  CAS  Article  Google Scholar 

  46. 46.

    Hafezi, M., Lukin, M. D. & Taylor, J. M. Non-equilibrium fractional quantum Hall state of light. New J. Phys. 15, 063001 (2013).

    ADS  Article  Google Scholar 

  47. 47.

    Jia, N. et al. A strongly interacting polaritonic quantum dot. Nat. Phys. 14, 550–554 (2018).

    CAS  Article  Google Scholar 

  48. 48.

    Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012).

    ADS  CAS  Article  Google Scholar 

  49. 49.

    Umucalılar, R. O. & Carusotto, I. Fractional quantum Hall states of photons in an array of dissipative coupled cavities. Phys. Rev. Lett. 108, 206809 (2012).

    ADS  Article  Google Scholar 

  50. 50.

    Grusdt, F., Letscher, F., Hafezi, M. & Fleischhauer, M. Topological growing of Laughlin states in synthetic gauge fields. Phys. Rev. Lett. 113, 155301 (2014).

    ADS  Article  Google Scholar 

  51. 51.

    Dutta, S. & Mueller, E. J. Coherent generation of photonic fractional quantum Hall states in a cavity and the search for anyonic quasiparticles. Phys. Rev. A 97, 033825 (2018).

    ADS  Article  Google Scholar 

  52. 52.

    Kapit, E., Hafezi, M. & Simon, S. H. Induced self-stabilization in fractional quantum Hall states of light. Phys. Rev. X 4, 031039 (2014).

    Google Scholar 

  53. 53.

    Lebreuilly, J. et al. Stabilizing strongly correlated photon fluids with non-Markovian reservoirs. Phys. Rev. A 96, 033828 (2017).

    ADS  Article  Google Scholar 

  54. 54.

    Wu, Y.-H., Tu, H.-H. & Sreejith, G. J. Fractional quantum Hall states of bosons on cones. Phys. Rev. A 96, 033622 (2017).

    ADS  Article  Google Scholar 

  55. 55.

    Avron, J. E. Odd viscosity. J. Stat. Phys. 92, 543–557 (1998).

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

We thank C. Kane and M. Levin for conversations. This work was supported by DOE grant DE-SC0010267 for apparatus construction and data collection and MURI grant FA9550-16-1-0323 for analysis.

Author information

Affiliations

Authors

Contributions

N.S., M.C. and J.S. designed and built the experiment. N.S. and M.C. collected and analysed the data. T.C. and A.G. developed the theory concerning \(\bar{s}\) and c. All authors contributed to the manuscript.

Corresponding author

Correspondence to Jonathan Simon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Resonator imaging comparison.

The LDOS in the second excited Landau level with an effective magnetic flux of ΦB/(2π) = −2/3 threading the cone tip highlights the improvements in the resonator design and the imaging system. The previous resonator28 (top left) exhibits substantial diagonal astigmatism, which has been removed in the resonator used here (top right). Images of modes in the lowest Landau level provide estimates of the expectation value of r2 (bottom), errors in which directly cause systematic errors in measurements of the shifted second moment. The substantial reduction in deviations from the ideal system enables measurements of the central charge and extensions to higher Landau levels. Error bars are calculated from the uncertainty in the centre location and waist size of the modes and are all smaller than the symbol size.

Supplementary information

Supplementary Information

This 12-page document contains 8 sections and 9 figures. These provide additional details about the experimental methods, theoretical background for numerical calculations and the theoretical results connecting LDOS measurements to topological invariants.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schine, N., Chalupnik, M., Can, T. et al. Electromagnetic and gravitational responses of photonic Landau levels. Nature 565, 173–179 (2019). https://doi.org/10.1038/s41586-018-0817-4

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing