







    Skip to main content




    
        
        Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
            the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
            Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
            and JavaScript.


    




    

    
            

            
                
                    Advertisement

                    
        
            
    
        
            
                [image: Advertisement]
        

    


        
    
                

            
        

    
        
            
                
                    
                    
                    
                        
                        
                            
                                
                                [image: Nature]
                            
                        
                    
                    

                    
                    	
                            
                                View all journals
                            
                        
	
                            
                                Search
                            
                        
	
                            
                                Log in
                            
                        


                

            

        

        
            
                
                    
                        	
                                    
                                        Explore content
                                    
                                
	
                                    
                                        About the journal
                                    
                                
	
                                        
                                            Publish with us
                                        
                                    
	
                                    
                                        Subscribe
                                    
                                


                        	
                                    
                                        Sign up for alerts
                                    
                                
	
                                    
                                            RSS feed
                                    
                                


                    

                

            

        
    


    
    
        
            
                	nature



	letters

	
                                    article


    
        
        
            
            
                
                    	Letter
	Published: 10 December 2018



                    Electric-field-tuned topological phase transition in ultrathin Na3Bi

                    	James L. Collins1,2,3, 
	Anton Tadich3,4, 
	Weikang Wu5, 
	Lidia C. Gomes6,7, 
	Joao N. B. Rodrigues6,8, 
	Chang Liu1,2,3, 
	Jack Hellerstedt1,2,9, 
	Hyejin Ryu10,11, 
	Shujie Tang10, 
	Sung-Kwan Mo10, 
	Shaffique Adam6,12, 
	Shengyuan A. Yang5,13, 
	Michael S. Fuhrer1,2,3 & 
	â€¦
	Mark T. Edmonds1,2,3Â 

Show authors

                    

                    
                        
    Nature

                        volumeÂ 564,Â pages 390â€“394 (2018)Cite this article
                    

                    
        
            	
                        16k Accesses

                    
	
                        156 Citations

                    
	
                            105 Altmetric

                        
	
                    Metrics details

                


        

    
                    
                

                
    
        Subjects

        	Surfaces, interfaces and thin films
	Topological matter


    


                
    
    

    
    

                
            


        
            Abstract
The electric-field-induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor1,2,3,4. In this scheme, â€˜onâ€™ is the ballistic flow of charge and spin along dissipationless edges of a two-dimensional quantum spin Hall insulator5,6,7,8,9, and â€˜offâ€™ is produced by applying an electric field that converts the exotic insulator to a conventional insulator with no conductive channels. Such a topological transistor is promising for low-energy logic circuits4, which would necessitate electric-field-switched materials with conventional and topological bandgaps much greater than the thermal energy at room temperature, substantially greater than proposed so far6,7,8. Topological Dirac semimetals are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases3,10,11,12,13,14,15,16. Here we use scanning tunnelling microscopy and spectroscopy and angle-resolved photoelectron spectroscopy to show that mono- and bilayer films of the topological Dirac semimetal3,17 Na3Bi are two-dimensional topological insulators with bulk bandgaps greater than 300Â millielectronvolts owing to quantum confinement in the absence of electric field. On application of electric field by doping with potassium or by close approach of the scanning tunnelling microscope tip, the Stark effect completely closes the bandgap and re-opens it as a conventional gap of 90Â millielectronvolts. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy at room temperature (25Â millielectronvolts), suggest that ultrathin Na3Bi is suitable for room-temperature topological transistor operation.
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                    Fig. 1: Characterization of epitaxial few-layer Na3Bi and overall electronic structure from ARPES.[image: ]


Fig. 2: Bandgap in ML and BL Na3Bi and edge state behaviour.[image: ]


Fig. 3: Band-structure modulation in ARPES in ML and BL Na3Bi using potassium (K) dosing.[image: ]


Fig. 4: Electric-field-induced bandgap modulation of ML and BL Na3Bi in STM.[image: ]
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Extended data figures and tables

Extended Data Fig. 1 RHEED, LEED and XPS characterization of few-layer Na3Bi.
a, b, RHEED patterns of Si(111) 7Â Ã—Â 7 reconstruction along the \(\bar{{\rm{\Gamma }}}-\bar{{\rm{M}}}\) direction (a) and of few-layer Na3Bi along the \(\bar{{\rm{\Gamma }}}-\bar{{\rm{K}}}\) direction (b). c, 1Â Ã—Â 1 LEED image of few-layer Na3Bi taken at 32Â eV. d, XPS of Na 2p and Bi 5d core level taken at hvÂ =Â 100Â eV for few-layer Na3Bi. e, Normalized XPS of Si 2p core level taken at 350Â eV (left panel) and at 850Â eV (right panel). Each panel shows the Si 2p of the clean Si substrate (black curve) and with few-layer Na3Bi grown on top (red curve). The spectra have been offset in intensity for clarity.


Extended Data Fig. 2 kz band dispersion of few-layer Na3Bi from photon-energy-dependent ARPES measurements.
These photon-energy-dependent ARPES measurements of ML/BL Na3Bi demonstrate effectively 2D dispersion. The figure shows a cut through the photon-energy-dependent (hvÂ =Â 45â€“55Â eV) Fermi surface, demonstrating non-dispersion of the gapped Dirac valence band along kz, with the intensity of emitted photoelectrons reflected in the colour scale.


Extended Data Fig. 3 Bandgap extraction from scanning tunnelling spectra.
a, b, dI/dV spectra taken for ML (red) and BL (black) Na3Bi plotted on a linear (a) and a logarithmic (b) scale. The logarithmic scale better accounts for the large change in intensity near the band edge. c, Normalized dI/dV spectra at various tipâ€“sample separations, illustrating that the onset in intensity typically occurs at a normalized dI/dV signal of 0.01 within an error of Â±25Â meV (when also accounting for tip-induced band bending). d, Calculated tip-induced band bending, Ï•BB, using equation (3) for different biases.


Extended Data Fig. 4 DFT calculations on the topological nature of Na3Bi layers.
a, 2D Brillouin zone for Na3Bi layered structures. Here we also show the projected 1D Brillouin zone used for studying the edge spectrum. bâ€“h, Results for ML (bâ€“f) and BL (gâ€“k) Na3Bi with Na(2) vacancies (with one Na(2) vacancy in a 2Â Ã—Â 2 supercell). b, g, Electronic band structures, where the energy zero is set to be at the valence band maximum. c, h, Orbitally resolved band structure without SOC and d, i, orbitally resolved band structure with SOC. The red dots represent the contribution from the Na s and Bi s atomic orbitals, and the blue dots represent contribution from the Bi px/py atomic orbitals. Band inversion induced by SOC can be clearly observed at the Î“ point for both ML and BL cases, which indicates that both ML and BL Na3Bi are non-trivial 2D topological insulators. e, j, Projected edge spectrum (edge along the [010] direction), where pairs of \({{\mathbb{Z}}}_{2}\) topological edge states can be observed in the energy gaps (marked by the white arrows) where the colour scale reflects the spectral weight. f, k, Calculated Wannier function centre evolutions, which indicate a nontrivial \({{\mathbb{Z}}}_{2}\) invariant (\({{\mathbb{Z}}}_{2}=1\)) for the bulk band structure in both ML and BL.


Extended Data Fig. 5 Extracting and fitting the dispersion relation from ARPES MDC and EDC spectra of few-layer Na3Bi.
a, ARPES intensity plot (colour scale at right) along the Kâ€“Î“â€“K direction after 30Â min of K dosing. b, Stack plots of MDCs for the valence band (left panel) and conduction band (right panel) extracted from a, where the blue circles represent the Gaussian-fit band locations. Red and yellow lines mark shared constant-energy kx vertices used throughout b and c. c, EDCs extracted from a. d, e, Fitting band coordinates that have been extracted by MDC and EDC analysis (red dots) to a hyperbola (d) and to a parabola (e), showing that Na3Bi-like bands are best described by a hyperbola function.


Extended Data Fig. 6 Displacement field calculations from K dosing in ARPES.
a, Electron-band Fermi surface of few-layer Na3Bi after 30Â min of K dosing, where the colour scale reflects the intensity of emitted photoelectrons at the Fermi energy. b, Red line, radially averaged momentum profile through the Fermi surface, showing the ring structure at kF (dashed blue line shows position of kF). c, Calculated charge density (left-hand y axis) using equation (7) and the corresponding electric displacement field (right-hand y axis) associated with the net charge transfer from the as-grown film as a function of K-dosing time. Red points are as-measured, and green points are extrapolated based on the EF shifting rate with K dosing between 15Â min and 50Â min.


Extended Data Fig. 7 Electric displacement field-dependence of topological insulator ML/BL Na3Bi bands near EF.
a, The sum of Î” parameters from the best fit of equation (5) to ARPES dispersion versus applied electric displacement field. Both Î”n,p are directly calculated from the high-field (purple) measurements, however in low-field (green) measurements, EF is not sufficiently shifted for the electron dispersion to be clearly resolved. Here we have used the ratio (Î”pÂ +Â Î”n)/Î”pÂ â‰ˆÂ 1.4 measured from the purple points to extrapolate Î”n for undosed film. b, The valence edge (blue) and conduction edge (red) calculated from the fitted ARPES dispersion are shown for two high-symmetry directions: circles for Kâ€“Î“â€“K and squares for Mâ€“Î“â€“M.


Extended Data Fig. 8 Electric-field calculations from STM.
a, b, Tunnelling current as a function of relative tipâ€“sample distance z for a, Au(111) (bias +500Â mV), and b, thin film Na3Bi (bias âˆ’300Â mV). The top axis in b represents the total distance, s, between tip and sample determined as described inÂ Methods section â€˜Calculating tipâ€“sample separation and electric fieldâ€™. The black lines in a and b are exponential fits. c, Energy-level schematic illustrating the effects of an image potential on the (purple trapezoidal) junction barrier, where s is the tipâ€“sample distance, and Ï•SampleÂ and Ï•TipÂ are the work function of the sample and tip, respectively. Progression from blue, green, yellow, orange and red curves indicates modification of the apparent barrier height due to the imaging potential at decreasing tipâ€“sample distances s. d, ln(I(s)/I0) shown as a function of distance for a square barrier model (blue dashed line), for DFT-LDA (black full line), for the image potential model (black dashed-dotted), and for the local orbital basis model (red line). Data are taken from figure 10 of ref. 41.


Extended Data Fig. 9 Scanning tunnelling spectra of ML Na3Bi.
Shown are individual dI/dV spectra taken on ML Na3Bi at different tipâ€“sample separations (electric field) (shown at right). The spectra have been normalized and offset for clarity.


Extended Data Fig. 10 DFT calculations of Na3Bi layers with electric field.
a, Calculated bandgap variation as a function of electric field for ML Na3Bi with an Na(2) vacancy. The gap closes and reopens at about 1.85Â VÂ Ã…âˆ’1. b, 2D Brillouin zone and the projected 1D boundary Brillouin zone. câ€“f, Orbital-resolved band structures and edge spectra for ML Na3Bi at electric fields of 0.0Â VÂ Ã…âˆ’1 (c, d) and 2.5Â VÂ Ã…âˆ’1 (e, f), which are marked by points A and B in a. c, Orbital-resolved band structures with SOC in the absence of electric field (the energy zero is set to be at the valence band maximum at the Î“ point). The red dots represent the contribution from the Na s and Bi s atomic orbitals, and the blue dots represent the contribution from the Bi px/py atomic orbitals. A band inversion is observed at the Î“ point induced by SOC, indicating that ML Na3Bi is a non-trivial 2D topological insulator. d, Projected edge spectrum (edge along the [010] direction) in the absence of electric field, showing topological edge states. Panels e and f show the corresponding results at an electric field of 2.5Â VÂ Ã…âˆ’1. In e, the band ordering at Î“ is inverted compared to c, indicating a topological phase transition to a trivial insulator phase. This is confirmed by the disappearance of topological edge states as shown in f.


Extended Data Fig. 11 Crystal structure and symmetries of ML and BL Na3Bi.
a, b, Tables showing the point group (PG) symmetries for ML and BL Na3Bi, respectively. The second and third rows of each table indicate the effects of electric field (Ez) and an Na(2) vacancy, respectively. We note that at zero electric field both pristine and Na(2) vacancy ML and BL Na3Bi are 2D QSH insulators, with topological index \(\upsilon \in {{\mathbb{Z}}}_{2}=1\). câ€“h, Crystal structure of Na3Bi as a result of an Na(2) vacancy and electric field. c, f, Pristine ML (c) and BL (f) Na3Bi; d, g, ML (d) and BL (g) Na3Bi each with an Na surface vacancy; e, h, ML (e) and BL (h) Na3Bi with Na surface vacancy plus electric field applied perpendicular to the sample.
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