Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Origin of spatial variation in US East Coast sea-level trends during 1900–2017

Abstract

Identifying the causes of historical trends in relative sea level—the height of the sea surface relative to Earth’s crust—is a prerequisite for predicting future changes. Rates of change along the eastern coast of the USA (the US East Coast) during the past century were spatially variable, and relative sea level rose faster along the Mid-Atlantic Bight than along the South Atlantic Bight and the Gulf of Maine. Past studies suggest that Earth’s ongoing response to the last deglaciation1,2,3,4,5, surface redistribution of ice and water5,6,7,8,9 and changes in ocean circulation9,10,11,12,13 contributed considerably to this large-scale spatial pattern. Here we analyse instrumental data14,15 and proxy reconstructions4,12 using probabilistic methods16,17,18 to show that vertical motions of Earth’s crust exerted the dominant control on regional spatial differences in relative sea-level trends along the US East Coast during 1900–2017, explaining most of the large-scale spatial variance. Rates of coastal subsidence caused by ongoing relaxation of the peripheral forebulge associated with the last deglaciation are strongest near North Carolina, Maryland and Virginia. Such structure indicates that Earth’s elastic lithosphere is thicker than has been assumed in other models19,20,21,22. We also find a substantial coastal gradient in relative sea-level trends over this period that is unrelated to deglaciation and suggests contributions from twentieth-century redistribution of ice and water. Our results indicate that the majority of large-scale spatial variation in long-term rates of relative sea-level rise on the US East Coast is due to geological processes that will persist at similar rates for centuries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rates of change.
Fig. 2: Latitudinal structure.
Fig. 3: Contributions to spatial differences.
Fig. 4: GIA-driven RSL trends.

Similar content being viewed by others

Data availability

The tide gauge and GPS data that support the findings of this study are available from the Permanent Service for Mean Sea Level (http://www.psmsl.org/) and Système d’Observation du Niveau des Eaux Littorales (http://www.sonel.org/), respectively. The proxy reconstructions are available from published databases4,12 and included with the model code (see ‘Code availability’ section). The GIA model predictions used to generate the results in this study are included with the model code (see ‘Code availability’ section). Maps in display items were produced using the Mapping Toolbox in MATLAB.

References

  1. Gornitz, V. & Seeber, L. Vertical crustal movements along the East Coast, North America, from historic and late Holocene sea level data. Tectonophysics 178, 127–150 (1990).

    Article  ADS  Google Scholar 

  2. Peltier, W. R. & Tushingham, A. M. Influence of glacial isostatic adjustment on tide gauge measurements of secular sea level change. J. Geophys. Res. 96 (B4), 6779–6796 (1991).

    Article  ADS  Google Scholar 

  3. Davis, J. L. & Mitrovica, J. X. Glacial isostatic adjustment and the anomalous tide gauge record of eastern North America. Nature 379, 331–333 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Engelhart, S. E. & Horton, B. P. Holocene sea-level database for the Atlantic coast of the United States. Quat. Sci. Rev. 54, 12–25 (2012).

    Article  ADS  Google Scholar 

  5. Kopp, R. E. Does the mid-Atlantic United States sea level acceleration hot spot reflect ocean dynamic variability? Geophys. Res. Lett. 40, 3981–3985 (2013).

    Article  ADS  Google Scholar 

  6. Miller, K. G., Kopp, R. E., Horton, B. P., Browning, J. V. & Kemp, A. C. A geological perspective on sea-level rise and its impacts along the U.S. mid-Atlantic coast. Earth. Fut. 1, 3–18 (2013).

    Article  ADS  Google Scholar 

  7. Karegar, M. A., Dixon, T. H. & Engelhart, S. E. Subsidence along the Atlantic Coast of North America: Insights from GPS and late Holocene relative sea-level data. Geophys. Res. Lett. 43, 3126–3133 (2016).

    Article  ADS  Google Scholar 

  8. Karegar, M. A., T. H. Dixon, R. Malservisi, J. Kusche, & S. E. Engelhart. Nuisance flooding and relative sea-level rise: the importance of present-day land motion. Sci. Rep. 7, 1197 (2017).

    Article  ADS  Google Scholar 

  9. Engelhart, S. E., Horton, B. P., Douglas, B. C., Peltier, W. R. & Törnqvist, T. E. Spatial variability of late Holocene 20th century sea-level rise along the Atlantic coast of the United States. Geology 37, 1115–1118 (2009).

    Article  ADS  Google Scholar 

  10. Douglas, B. C. Global sea level rise. J. Geophys. Res. 96 (C4), 6981–6992 (1991).

    Article  ADS  Google Scholar 

  11. Yin, J. & Goddard, P. B. Oceanic control of sea level rise patterns along the East Coast of the United States. Geophys. Res. Lett. 40, 5514–5520 (2013).

    Article  ADS  Google Scholar 

  12. Kemp, A. C. et al. Late Holocene sea- and land-level change on the U. S. Southeastern Atlantic coast. Mar. Geol. 357, 90–100 (2014).

    Article  ADS  Google Scholar 

  13. Wake, L., Milne, G. & Leuliette, E. 20th century sea-level change along the eastern US: unravelling the contributions from steric changes, Greenland Ice Sheet mass balance and Late Pleistocene glacial loading. Earth Planet. Sci. Lett. 250, 572–580 (2006).

    Article  ADS  CAS  Google Scholar 

  14. Holgate, S. J. et al. New data systems and products at the Permanent Service For Mean Sea Level. J. Coast. Res. 29, 493–504 (2013).

    Article  Google Scholar 

  15. Santamaría-Gómez, A. et al. Uncertainty of the 20th century sea-level rise due to vertical land motion errors. Earth Planet. Sci. Lett. 473, 24–32 (2017).

    Article  ADS  Google Scholar 

  16. Tingley, M. P. & Huybers, P. Recent temperature extremes at high northern latitudes unprecedented in the past 600 years. Nature 496, 201–205 (2013).

    Article  ADS  CAS  Google Scholar 

  17. Piecuch, C. G., Huybers, P. & Tingley, M. P. Comparison of full and empirical Bayes approaches for inferring sea-level changes from tide-gauge data. J. Geophys. Res. Oceans 122, 2243–2258 (2017).

    Article  ADS  Google Scholar 

  18. Cressie, N. & Wikle, C. K. Statistics for Spatio-Temporal Data 1–588 (John Wiley & Sons, 2011).

  19. Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

    Article  ADS  CAS  Google Scholar 

  20. Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).

    Article  ADS  Google Scholar 

  21. Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

    Article  ADS  CAS  Google Scholar 

  22. Love, R. et al. The contribution of glacial isostatic adjustment to projections of sea-level change along the Atlantic and Gulf coasts of North America. Earth. Fut. 4, 440–464 (2016).

    Article  ADS  Google Scholar 

  23. Hay, C. C., Morrow, E., Kopp, R. E. & Mitrovica, J. X. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517, 481–484 (2015).

    Article  ADS  CAS  Google Scholar 

  24. Uchupi, E. & Aubrey, D. G. Suspect terranes in the North American margins and relative sea-levels. J. Geol. 96, 79–90 (1988).

    Article  ADS  Google Scholar 

  25. Wöppelmann, G. & Marcos, M. Vertical land motion as a key to understanding sea level change and variability. Rev. Geophys. 54, 64–92 (2016).

    Article  ADS  Google Scholar 

  26. Creveling, J. R., Mitrovica, J. X., Clark, P. U., Waelbroeck, C. & Pico, T. Predicted bounds on peak global mean sea level during marine isotope stages 5a and 5c. Quat. Sci. Rev. 163, 193–208 (2017).

    Article  ADS  Google Scholar 

  27. Kopp, R. E. et al. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth. Fut. 2, 383–406 (2014).

    Article  ADS  Google Scholar 

  28. Hamlington, B. D. et al. Observation-driven estimation of the spatial variability of 20th century sea level rise. J. Geophys. Res. Oceans 123, 2129–2140 (2018).

    Article  ADS  Google Scholar 

  29. Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Chang. 5, 475–480 (2015).

    Article  ADS  Google Scholar 

  30. Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).

    Article  ADS  CAS  Google Scholar 

  31. Thornalley, D. J. R. et al. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556, 227–230 (2018).

    Article  ADS  CAS  Google Scholar 

  32. McCarthy, G. D., Haigh, I. D., Hirschi, J. J.-M., Grist, J. P. & Smeed, D. A. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature 521, 508–510 (2015).

    Article  ADS  CAS  Google Scholar 

  33. Permanent Service for Mean Sea Level (PSMSL) Tide Gauge Data http://www.psmsl.org/data/obtaining/ (PSMSL, 2018).

  34. Altamimi, Z., Collilieux, X. & Métivier, L. ITRF2008: an improved solution of the international terrestrial reference frame. J. Geod. 85, 457–473 (2011).

    Article  ADS  Google Scholar 

  35. Engelhart, S. E., Horton, B. P. & Kemp, A. C. Holocene sea level changes along the United States’ Atlantic Coast. Oceanography 24, 70–79 (2011).

    Article  Google Scholar 

  36. Bos, M. S., Williams, S. D. P., Araújo, I. B. & Bastos, L. The effect of temporal correlated noise on the sea level rate and acceleration uncertainty. Geophys. J. Int. 196, 1423–1430 (2014).

    Article  ADS  Google Scholar 

  37. Banerjee, S., Carlin, B. P. & Gelfand, A. E. Hierarchical Modeling and Analysis for Spatial Data 1–448 (Chapman and Hall, Boca Raton, 2004).

    MATH  Google Scholar 

  38. Woodworth, P. L., Morales Maqueda, M. A., Roussenov, V. M., Williams, R. G. & Hughes, C. W. Mean sea-level variability along the northeast American Atlantic coast and the roles of the wind and the overturning circulation. J. Geophys. Res. Oceans 119, 8916–8935 (2014).

    Article  ADS  Google Scholar 

  39. Thompson, P. R. & Mitchum, G. T. Coherent sea level variability on the North Atlantic western boundary. J. Geophys. Res. Oceans 119, 5676–5689 (2014).

    Article  ADS  Google Scholar 

  40. Piecuch, C. G., Dangendorf, S., Ponte, R. M. & Marcos, M. Annual sea level changes on the North American Northeast Coast: influence of local winds and barotropic motions. J. Clim. 29, 4801–4816 (2016).

    Article  ADS  Google Scholar 

  41. Santamaría-Gómez, A. & Mémin, A. Geodetic secular velocity errors due to interannual surface loading deformation. Geophys. J. Int. 202, 763–767 (2015).

    Article  ADS  Google Scholar 

  42. Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis 2nd edn, 1–668 (Chapman and Hall, Boca Raton, 2004).

    MATH  Google Scholar 

  43. Zhang, H. Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. J. Am. Stat. Assoc. 99, 250–261 (2004).

    Article  MathSciNet  Google Scholar 

  44. Tingley, M. P. & Huybers, P. A Bayesian algorithm for reconstructing climate anomalies in space and time. Part I: development and applications to paleoclimate reconstruction problems. J. Clim. 23, 2759–2781 (2010).

    Article  ADS  Google Scholar 

  45. Mannshardt, E., Craigmile, P. F. & Tingley, M. P. Statistical modeling of extreme value behavior in North American tree-ring density series. Clim. Change 117, 843–858 (2013).

    Article  Google Scholar 

  46. Tierney, J. E. & Tingley, M. P. A Bayesian, spatially-varying calibration model for the TEX86 proxy. Geochim. Cosmochim. Acta 127, 83–106 (2014).

    Article  ADS  CAS  Google Scholar 

  47. Werner, J. P. & Tingley, M. P. Technical Note: Probabilistically constrained proxy age-depth models within a Bayesian hierarchical reconstruction model. Clim. Past 11, 533–545 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

Funding came from Woods Hole Oceanographic Institution’s Investment in Science Fund; Harvard University and from NSF awards 1558939, 1558966 and 1458921 and from NASA awards NNH16CT01C, NNX17AE17G and 80NSSC17K0698. We acknowledge conversations with S. Adhikari, B.D. Hamlington, F.W. Landerer, S.J. Lentz and P.R. Thompson.

Reviewer information

Nature thanks M. King, R. Rietbroek and the other anonymous reviewer for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

C.G.P. and P.H. jointly conceived the study. C.G.P., P.H. and M.P.T. formulated the model framework. C.C.H. and J.X.M. provided the GIA model solutions. A.C.K. provided the sea-level index points. C.G.P. performed the analyses and wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Christopher G. Piecuch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Study region.

Map of the US East Coast and individual coastal states. Two white stars indicate Cape Cod (north) and Cape Hatteras (south), demarcating the three study regions: Gulf of Maine, Mid-Atlantic Bight and South Atlantic Bight.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, additional references and Supplementary Figs. 1–8.

Supplementary Tables

This file contains Supplementary Tables 1–30.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piecuch, C.G., Huybers, P., Hay, C.C. et al. Origin of spatial variation in US East Coast sea-level trends during 1900–2017. Nature 564, 400–404 (2018). https://doi.org/10.1038/s41586-018-0787-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0787-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing