Scalable energy-efficient magnetoelectric spin–orbit logic

Abstract

Since the early 1980s, most electronics have relied on the use of complementary metal–oxide–semiconductor (CMOS) transistors. However, the principles of CMOS operation, involving a switchable semiconductor conductance controlled by an insulating gate, have remained largely unchanged, even as transistors are miniaturized to sizes of 10 nanometres. We investigated what dimensionally scalable logic technology beyond CMOS could provide improvements in efficiency and performance for von Neumann architectures and enable growth in emerging computing such as artifical intelligence. Such a computing technology needs to allow progressive miniaturization, reduce switching energy, improve device interconnection and provide a complete logic and memory family. Here we propose a scalable spintronic logic device that operates via spin–orbit transduction (the coupling of an electron’s angular momentum with its linear momentum) combined with magnetoelectric switching. The device uses advanced quantum materials, especially correlated oxides and topological states of matter, for collective switching and detection. We describe progress in magnetoelectric switching and spin–orbit detection of state, and show that in comparison with CMOS technology our device has superior switching energy (by a factor of 10 to 30), lower switching voltage (by a factor of 5) and enhanced logic density (by a factor of 5). In addition, its non-volatility enables ultralow standby power, which is critical to modern computing. The properties of our device indicate that the proposed technology could enable the development of multi-generational computing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: MESO logic transduction and device operation.
Fig. 2: Operating mechanisms for MESO logic.
Fig. 3: Energy and delay of the MESO device.
Fig. 4: Performance and area of MESO device in comparison with advanced CMOS and leading beyond-CMOS devices.
Fig. 5: Spin–orbit readout for the MESO device.
Fig. 6: Progress of magnetoelectric transduction via MESO towards a voltage of 100 mV.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Kuhn, K. J. Considerations for ultimate CMOS scaling. IEEE Trans. Electron Dev. 59, 1813–1828 (2012).

    ADS  CAS  Article  Google Scholar 

  2. 2.

    Ferain, I., Colinge, C. A. & Colinge, J.-P. Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479, 310–316 (2011).

    ADS  CAS  Article  Google Scholar 

  3. 3.

    Auth, C. et al. A 10 nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, self-aligned quad patterning, contact over active gate and cobalt local interconnects. In Electron Devices Meeting 2017, 29.1.1–29.1.4 (IEEE, 2017).

  4. 4.

    Moore, G. E. Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1998).

    Article  Google Scholar 

  5. 5.

    Dennard, R. H., Gaensslen, F. H., Yu, H. N., Rideout, V. L., Bassous, E. & Leblanc, A. R. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid St. Circ. 9, 256–268 (1974).

    ADS  Article  Google Scholar 

  6. 6.

    Ghani, T. et al. A 90 nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors. In Electron Devices Meeting 2003, 11.6.1–11.6.3 (IEEE, 2003).

  7. 7.

    Krishnamohan, T. et al. Comparison of (001), (110) and (111) uniaxial- and biaxial- strained-Ge and strained-Si PMOS DGFETs for all channel orientations: mobility enhancement, drive current, delay and off-state leakage. In Electron Devices Meeting 2008, 1–4 (IEEE, 2008).

  8. 8.

    Huang, X. et al. Sub 50-nm FinFET: PMOS. In Electron Devices Meeting 1998, 67–70 (IEEE, 1999).

  9. 9.

    Schumacher, M., Baumann, P. K. & Seidel, T. AVD and ALD as two complementary technology solutions for next generation dielectric and conductive thin-film processing. Chem. Vap. Depos. 12, 99–108 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    Horowitz, M. Computing's energy problem (and what we can do about it). In Solid-State Circuits Conference Digest of Technical Papers 2014 10–14 (IEEE, 2014).

  11. 11.

    Theis, T. N. & Solomon, P. M. It’s time to reinvent the transistor! Science 327, 1600–1601 (2010).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    Nikonov, D. E. & Young, I. A., Benchmarking of beyond-CMOS exploratory devices for logic integrated circuits. IEEE J. Explor. Solid-State Computat. Devices Circuits 1, 3–11 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Zografos, O. et al. Design and benchmarking of hybrid CMOS-spin wave device circuits compared to 10 nm CMOS. In 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO), 686–689 (IEEE, 2015).

  15. 15.

    Ma, K. et al. Nonvolatile processor architecture exploration for energy-harvesting applications. IEEE Micro 35, 32–40 (2015).

    Article  Google Scholar 

  16. 16.

    Mead, C. Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636 (1990).

    Article  Google Scholar 

  17. 17.

    Patil, A. D., Manipatruni, S., Nikonov, D., Young, I. A. & Shanbhag, N. R. 2017. Shannon-inspired statistical computing to enable spintronics. Preprint at https://arxiv.org/abs/1702.06119 (2017).

  18. 18.

    Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459 (1971).

    ADS  Article  Google Scholar 

  19. 19.

    Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    ADS  Article  Google Scholar 

  20. 20.

    Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101 (2009).

    ADS  CAS  Article  Google Scholar 

  22. 22.

    Rojas Sánchez, J. C. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 4, 2944 (2013).

    Article  Google Scholar 

  23. 23.

    Shen, K., Vignale, G. & Raimondi, R. Microscopic theory of the inverse Edelstein effect. Phys. Rev. Lett. 112, 096601 (2014).

    ADS  Article  Google Scholar 

  24. 24.

    Shiomi, Y. et al. Spin–electricity conversion induced by spin injection into topological insulators. Phys. Rev. Lett. 113, 196601 (2014).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Varignon, J., Vila, L., Barthelemy, A. & Bibes, M. A new spin for oxide interfaces. Nat. Phys. 14, 322 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    Spaldin, N. A. & Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005).

    CAS  Article  Google Scholar 

  27. 27.

    Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Cherifi, R. O. et al. Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345–351 (2014).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010).

    ADS  CAS  Article  Google Scholar 

  30. 30.

    Manipatruni, S. et al. Voltage control of uni-directional anisotropy in ferromagnet–multiferroic system. Preprint at https://arxiv.org/abs/1801.08280 (2018).

  31. 31.

    Brataas, A., Bauer, G. E. & Kelly, P. J. Non-collinear magnetoelectronics. Phys. Rep. 427, 157–255 (2006).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Manipatruni, S., Nikonov, D. E. & Young, I. A. Modeling and design of spintronic integrated circuits. IEEE Trans. Circuits Syst. 59, 2801–2814 (2012).

    MathSciNet  Article  Google Scholar 

  33. 33.

    Omori, Y. et al. Inverse spin Hall effect in a closed loop circuit. Appl. Phys. Lett. 104, 242415 (2014).

    ADS  Article  Google Scholar 

  34. 34.

    Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699 (2014).

    ADS  CAS  Article  Google Scholar 

  35. 35.

    Mahendra, D. C. et al. Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered BixSe(1−x) topological insulator material. Preprint at https://arxiv.org/abs/1703.03822 (2017).

  36. 36.

    Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261–1266 (2016).

    ADS  CAS  Article  Google Scholar 

  37. 37.

    Ast, C. R. et al. Giant spin splitting through surface alloying. Phys. Rev. Lett. 98, 186807 (2007).

    ADS  Article  Google Scholar 

  38. 38.

    Veit, M. J., Arras, R., Ramshaw, B. J., Pentcheva, R. & Suzuki, Y. Nonzero Berry phase in quantum oscillations from giant Rashba-type spin splitting in LaTiO3/SrTiO3 heterostructures. Nat. Commun. 9, 1458 (2018).

    ADS  CAS  Article  Google Scholar 

  39. 39.

    Meindl, J. D., Chen, Q. & Davis, J. A. Limits on silicon nanoelectronics for terascale integration. Science 293, 2044–2049 (2001).

    ADS  CAS  Article  Google Scholar 

  40. 40.

    Manipatruni, S., Lipson, M. & Young, I. A. Device scaling considerations for nanophotonic CMOS global interconnects. IEEE J. Sel. Topics Quantum Electron. 19, 8200109 (2013).

    ADS  Article  Google Scholar 

  41. 41.

    Mayadas, A. F., Shatzkes, M. & Janak, J. F. Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces. Appl. Phys. Lett. 14, 345–347 (1969).

    ADS  Article  Google Scholar 

  42. 42.

    Chu, Y. H. et al. Low voltage performance of epitaxial BiFeO3 films on Si substrates through lanthanum substitution. Appl. Phys. Lett. 92, 102909 (2008).

    ADS  Article  Google Scholar 

  43. 43.

    Gardner, D. S., Meindl, J. D. & Saraswat, K. C. Interconnection and electro migration scaling theory. IEEE Trans. Electron Dev. 34, 633–643 (1987).

    ADS  Article  Google Scholar 

  44. 44.

    Karube, S., Kondou, K. & Otani, Y. 2016. Experimental observation of spin to charge current conversion at non-magnetic metal/Bi2O3 interfaces. Preprint at https://arxiv.org/abs/1601.04292 (2016).

  45. 45.

    Pesin, D. & Balents, L. Mott physics and band topology in materials with strong spin–orbit interaction. Nat. Phys. 6, 376 (2010).

    CAS  Article  Google Scholar 

  46. 46.

    Rojas-Sánchez, J.-C. et al. Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films. Phys. Rev. Lett. 116, 096602 (2016).

    ADS  Article  Google Scholar 

  47. 47.

    Khang, N. H. D., Ueda, Y. & Hai, P. N. A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching. Nat. Mater. 17, 808–813 (2018).

    ADS  CAS  Article  Google Scholar 

  48. 48.

    Cheng, C. et al. Direct observation of spin-to-charge conversion in MoS2 monolayer with spin pumping. Preprint at https://arxiv.org/abs/1510.03451 (2015).

  49. 49.

    Wang, G. et al. Spin–orbit engineering in transition metal dichalcogenide alloy monolayers. Nat. Commun. 6, 10110 (2015).

    ADS  CAS  Article  Google Scholar 

  50. 50.

    Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T. & Tokura, Y. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    ADS  CAS  Article  Google Scholar 

  51. 51.

    Mundy, J. A. et al. Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic. Nature 537, 523 (2016).

    ADS  CAS  Article  Google Scholar 

  52. 52.

    Srisukhumbowornchai, N. & Guruswamy, S. Large magnetostriction in directionally solidified FeGa and FeGaAl alloys. J. Appl. Phys. 90, 5680–5688 (2001).

    ADS  CAS  Article  Google Scholar 

  53. 53.

    Ryu, J., et al. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn J. Appl. Phys. 40, 4948 –4951 (2001).

    ADS  CAS  Article  Google Scholar 

  54. 54.

    Street, M. et al. Increasing the Néel temperature of magnetoelectric chromia for voltage-controlled spintronics. Appl. Phys. Lett. 104, 222402 (2014).

    ADS  Article  Google Scholar 

  55. 55.

    Wang, J. et al. Magnetoelectric Fe2TeO6 thin films. J. Phys. Condens. Matter 26, 055012 (2014).

    Article  Google Scholar 

  56. 56.

    Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 5, 266–270 (2010).

    ADS  CAS  Article  Google Scholar 

  57. 57.

    Nikonov, D. E., Bourianoff, G. I. & Ghani, T. Proposal of a spin torque majority gate logic. IEEE Electron Device Lett. 32, 1128–1130 (2011).

    ADS  Article  Google Scholar 

  58. 58.

    Manipatruni, S., Nikonov, D. E. & Young, I. A. Material targets for scaling all-spin logic. Phys. Rev. Appl. 5, 014002 (2016).

    ADS  Article  Google Scholar 

  59. 59.

    Imre, A. et al. Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205–208 (2006).

    ADS  CAS  Article  Google Scholar 

  60. 60.

    Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data processing. Nat. Commun. 5, 4700 (2014).

    ADS  CAS  Article  Google Scholar 

  61. 61.

    Ionescu, A. M. & Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011).

    ADS  CAS  Article  Google Scholar 

  62. 62.

    Lu, H. & Seabaugh, A. Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2, 44–49 (2014).

    CAS  Article  Google Scholar 

  63. 63.

    Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

    ADS  CAS  Article  Google Scholar 

  64. 64.

    Newns, D., Elmegreen, B., Liu, X. H. & Martyna, G. A low-voltage high-speed electronic switch based on piezoelectric transduction. J. Appl. Phys. 111, 084509 (2012).

    ADS  Article  Google Scholar 

  65. 65.

    Son, J., Rajan, S., Stemmer, S. & Allen, S. J. A heterojunction modulation-doped Mott transistor. J. Appl. Phys. 110, 084503 (2011).

    ADS  Article  Google Scholar 

  66. 66.

    Srinivasan, S., Diep, V., Behin-Aein, B., Sarkar, A. & Datta, S. Modeling multi-magnet networks interacting via spin currents. In Handbook of Spintronics 1281–1335 (2016).

  67. 67.

    Apalkov, D. M. & Visscher, P. B. Spin-torque switching: Fokker–Planck rate calculation. Phys. Rev. B 72, 180405 (2005).

    ADS  Article  Google Scholar 

  68. 68.

    Butler, W. H. et al. Switching distributions for perpendicular spin-torque devices within the macrospin approximation. IEEE Trans. Magnet. 48, 4684–4700 (2012).

    ADS  Article  Google Scholar 

  69. 69.

    Shannon, C. E. A universal Turing machine with two internal states. Automata Stud. 34, 157–165 (1957).

    MathSciNet  Google Scholar 

  70. 70.

    Amarù, L. et al. Majority logic synthesis. In Proc. International Conference on Computer-Aided Design 79 (ACM, 2018).

  71. 71.

    Manipatruni, S., Nikonov, D. E. & Young, I. A. All-spin nanomagnetic state elements. Appl. Phys. Lett. 103, 063503 (2013).

    ADS  Article  Google Scholar 

  72. 72.

    Dutta, S. et al. Highly scaled ruthenium interconnects. IEEE Electron Dev. Lett. 38, 949–951 (2017).

    ADS  CAS  Article  Google Scholar 

  73. 73.

    Dutta, S. et al. Sub-100 nm2 cobalt interconnects. IEEE Electron Dev. Lett. 39, 731–734 (2018).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Fert and J.-P. Wang for discussions. We acknowledge F. Rana, D. Schlom and F. Casanova for insights shared with us. We also acknowledge the support of K. Oguz and B. Buford of Intel Corporation for discussions on device integration and metrology. R.R. acknowledges the long-term support of the Quantum Materials programme funded by the US Department of Energy, Office of Basic Energy Sciences, which laid the foundation for the key elements of the work reported in this paper. B.P., Y.-L.H. and R.R. acknowledge support from Semiconductor Research Corporation within the JUMP program.

Reviewer information

Nature thanks V. Bertacco, Y. Otani and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

S.M. identified the use of the inverse spin–orbit effect for electrically transduced spin-logic devices. S.M., D.E.N. and I.A.Y. developed the logic circuits. S.M. developed the scaling laws, physical macro models and interconnect estimates. H.L. developed circuit design techniques and performed the logic-circuit simulations with the physical macro models. S.M. and R.R. developed the material scaling options and coordinated the material growth. S.M. conceptualized the test devices and designed the experiments and measurements for the magnetoelectric and spin–orbit devices. D.E.N. benchmarked the performance of the circuits. C.-C.L., B.P. and T.G. performed the layout of the test devices, processed the devices and identified processing methods for sub-micron-sized magnetoelectric and spin–orbit devices. S.M. and E.B. measured the magnetoelectric devices. S.M. and T.G. measured the spin–orbit devices. B.P., Y.-L.H. and E.B. deposited the samples and performed material characterization under the supervision of R.R. S.M. wrote the manuscript and D.E.N., I.A.Y. and R.R. edited the manuscript. All authors reviewed the manuscript and interpreted the data.

Corresponding author

Correspondence to Sasikanth Manipatruni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains a Supplementary Guide and Supplementary Text sections A to Q, which includes Supplementary Figs. 1 to 24 and Supplementary Tables 1 to 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manipatruni, S., Nikonov, D.E., Lin, C. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019). https://doi.org/10.1038/s41586-018-0770-2

Download citation

Keywords

  • Complementary Metal Oxide Semiconductor (CMOS)
  • Switching Energy
  • Simulation Program With Integrated Circuit Emphasis (SPICE)
  • Spin Current
  • CMOS Devices

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.