Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental realization of on-chip topological nanoelectromechanical metamaterials

Abstract

Guiding waves through a stable physical channel is essential for reliable information transport. However, energy transport in high-frequency mechanical systems, such as in signal-processing applications1, is particularly sensitive to defects and sharp turns because of back-scattering and losses2. Topological phenomena in condensed matter systems have shown immunity to defects and unidirectional energy propagation3. Topological mechanical metamaterials translate these properties into classical systems for efficient phononic energy transport. Acoustic and mechanical topological metamaterials have so far been realized only in large-scale systems, such as arrays of pendulums4, gyroscopic lattices5,6, structured plates7,8 and arrays of rods, cans and other structures acting as acoustic scatterers9,10,11,12. To fulfil their potential in device applications, mechanical topological systems need to be scaled to the on-chip level for high-frequency transport13,14,15. Here we report the experimental realization of topological nanoelectromechanical metamaterials, consisting of two-dimensional arrays of free-standing silicon nitride nanomembranes that operate at high frequencies (10–20 megahertz). We experimentally demonstrate the presence of edge states, and characterize their localization and Dirac-cone-like frequency dispersion. Our topological waveguides are also robust to waveguide distortions and pseudospin-dependent transport. The on-chip integrated acoustic components realized here could be used in unidirectional waveguides and compact delay lines for high-frequency signal-processing applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Unit cell geometry and topological phase transitions.
Fig. 2: Characterization of topological edge states.
Fig. 3: Waveguide robustness against imperfections.
Fig. 4: Pseudospin-dependent wave propagation.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Olsson, R. H. III & El-Kady, I. Microfabricated phononic crystal devices and applications. Meas. Sci. Technol. 20, 012002 (2009).

    Article  ADS  CAS  Google Scholar 

  2. Baboly, M. G. et al. Demonstration of acoustic waveguiding and tight bending in phononic crystals. Appl. Phys. Lett. 109, 183504 (2016).

    Article  ADS  CAS  Google Scholar 

  3. Hasan, M. Z. & Kane, C. L. Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  CAS  Google Scholar 

  4. Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Nash, L. M. et al. Topological mechanics of gyroscopic metamaterials. Proc. Natl Acad. Sci. USA 112, 14495–14500 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mitchell, N. P., Nash, L. M., Hexner, D., Turner, A. M. & Irvine, W. T. M. Amorphous topological insulators constructed from random point sets. Nat. Phys. 14, 380–385 (2018).

    Article  CAS  Google Scholar 

  7. Serra-Garcia, M. et al. Observation of a phononic quadrupole topological insulator. Nature 555, 342–345 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Yu, S. et al. Elastic pseudospin transport for integratable topological phononic circuits. Nat. Commun. 9, 3072 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. He, C. et al. Acoustic topological insulator and robust one-way sound transport. Nat. Phys. 12, 1124–1129 (2016).

    Article  CAS  Google Scholar 

  10. Lu, J. et al. Observation of topologically valley transport of sound in sonic crystals. Nat. Phys. 13, 369–374 (2017).

    Article  CAS  Google Scholar 

  11. Yves, S., Fleury, R., Lemoult, F., Fink, M. & Lerosey, G. Topological acoustic polaritons: robust and sound manipulation at the subwavelength scale. New J. Phys. 19, 075003 (2017).

    Article  ADS  CAS  Google Scholar 

  12. He, H. et al. Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature 560, 61–64 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Peano, V., Brendel, C., Schmidt, M. & Marquardt, F. Topological phases for sound and light. Phys. Rev. X 5, 031011 (2015).

    Google Scholar 

  14. Brendel, C., Peano, V., Painter, O. J. & Marquardt, F. Pseudomagnetic fields for sound at the nanoscale. Proc. Natl Acad. Sci. USA 114, E3390–E3395 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brendel, C., Peano, V., Painter, O. J. & Marquardt, F. Snowflake phononic topological insulator at the nanoscale. Phys. Rev. B 97, 020102 (2018).

    Article  ADS  Google Scholar 

  16. Huang, X. M. H., Zorman, C. A., Mehregany, M. & Roukes, M. L. Nanoelectromechanical systems: nanodevice motion at microwave frequencies. Nature 421, 496 (2003).

    Article  ADS  CAS  Google Scholar 

  17. Craighead, H. G. Nanoelectromechanical systems. Science 290, 1532–1535 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. De Alba, R. D. et al. Tunable phonon-cavity coupling in graphene membranes. Nat. Nanotechnol. 11, 741–746 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Faust, T., Rieger, J., Seitner, M. J., Kotthaus, J. P. & Weig, E. M. Coherent control of a classical nanomechanical two-level system. Nat. Phys. 9, 485–488 (2013).

    Article  CAS  Google Scholar 

  20. Okamoto, H. et al. Coherent phonon manipulation in coupled mechanical resonators. Nat. Phys. 9, 485–488 (2013).

    Article  CAS  Google Scholar 

  21. Hatanaka, D., Mahboob, I., Onomitsud, K. & Yamaguchi, H. Phonon waveguides for electromechanical circuits. Nat. Nanotechnol. 9, 520–524 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Hatanaka, D., Dodel, A., Mahboob, I., Onomitsud, K. & Yamaguchi, H. Phonon propagation dynamics in band-edngineered one-dimensional phononic crystal waveguides. New J. Phys. 17, 113032 (2015).

    Article  ADS  CAS  Google Scholar 

  23. Cha, J. & Daraio, C. Electrical tuning of elastic wave propagation in nanomechanical lattices at MHz frequencies. Nat. Nanotechnol. 13, 1016–1020 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Kurosu, M., Hatanaka, D., Onomitsu, K. & Yamaguchi, H. On-chip temporal focusing of elastic waves in a phononic crystal waveguide. Nat. Commun. 9, 1331 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu, L. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Yves, S. et al. Crystalline metamaterials for topological properties at subwavelength scales. Nat. Commun. 8, 16023 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Matlack, K. H., Serra-Garcia, M., Palermo, A., Huber, S. D. & Daraio, C. Designing perturbative metamaterials from discrete models. Nat. Mater. 17, 323–328 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Chen, C. et al. Graphene mechanical oscillators with tunable frequency. Nat. Nanotechnol. 8, 923–927 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81–85 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Cheng, X. et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater. 15, 542–548 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.C. and C.D. acknowledge partial support for this project from NSF EFRI award number 1741565, and the Kavli Nanoscience Institute at Caltech. K.W.K. acknowledges support for this project from the “Overseas Research Program for Young Scientists” programme through the Korea Institute for Advanced Study (KIAS).

Reviewer information

Nature thanks S. Iwamoto and the other anonymous reviewers for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

J.C. and C.D. conceived the idea of the research. J.C. designed and fabricated the samples, built the experimental setups and performed the measurements. J.C. also performed all numerical simulations. J.C. and K.W.K. performed the theoretical studies. J.C., K.W.K. and C.D. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Chiara Daraio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Fabrication.

a, Etch holes are periodically arranged in an extended honeycomb lattice. a is a lattice parameter and w is the distance between two neighbouring etch holes. The bottom picture shows the cross-sectional view. b, After a sample is immersed in a buffered oxide etchant, the thermal SiO2 is radially etched from the etch holes. The etching paths are illustrated by the brown circles with radius r. The overlap between two membranes affects the coupling strength, by controlling the distance w. c, Optical microscope image of a partially etched samples. The yellow circles represent free-standing SiNx membranes and the darker/purple region is SiNx/SiO2. Scale bar, 18 μm.

Extended Data Fig. 2 Unit cell structures for the different topological phases.

ac, Unit cell geometries for w = 5.5 μm (a), w = 6.0 μm (b) and w = 6.5 μm (c). Here, r = 4.9 μm is the etching distance from the centre of the etch holes. The central hexagon and the six corners represent the regions of unetched thermal SiO2. These are modelled as fixed boundaries in finite element simulations.

Extended Data Fig. 3 Experimental characterization of the straight topological edge waveguide.

a, Frequency responses (amplitude only) obtained from a spatial scan of 20 sites of the straight edge waveguide. The scanning period is 18 μm. The intensity decay around 15 MHz represents a defect mode. b, Amplitude × sin(phase) responses obtained from the spatial scan. c, Frequency dispersion obtained from Fourier transformation of the data shown in b.

Extended Data Fig. 4 Characteristics of the defect mode.

a, Optical microscope image of the excitation region and the defective unit including the gold electrode. b, Experimental data for the amplitude decay of the defect mode. The red squares denote the experimental data and the black solid line represents a fitting function. Here, the fitting parameters a and b are 1.408 mV and 114.1292 μm.

Extended Data Fig. 5 Characteristics of the distorted waveguide.

a, Frequency dispersion curve along the edge waveguide. b, Frequency responses of the bulk of the non-trivial phase (left), the output of the edge waveguide (middle), and the bulk of the trivial phase (right). c, A spatiotemporal response of unfiltered propagating pulses with broadband frequencies ranging from 12.8 MHz to 15.8 MHz. dk, Filtered spatiotemporal responses of the propagating pulses with different centre frequencies. The bandwidth of the pulses is 0.3 MHz. The centre frequencies are 13.48 MHz (d), 13.68 MHz (e), 13.85 MHz (f), 14.1 MHz (g), 14.35 MHz (h), 14.75 MHz (i), 14. 975 MHz (j) and 15.23 MHz (k).

Extended Data Fig. 6 Frequency responses of the NEMM with the pseudospin filter configuration.

ae, Frequency responses of the bulk of the non-trivial phase (w = 6.5 μm; a), output 1 (b), output 2 (c), output 3 (d) and the bulk of the trivial phase (w = 5.5 μm; e), shown in Fig. 4a. The light-red and light-blue regions represent the bandgaps of the non-trivial and trivial phases, respectively.

Supplementary information

Video 1: Time evolution of the plate vibrational mode at point 1 in Figure 2f.

The corresponding wavenumber and eigenfrequency are 17,453 m−1 and 14.77 MHz.

Video 2: Time evolution of the plate vibrational mode at point 2 in Figure 2f.

The corresponding wavenumber and eigenfrequency are -17,453 m−1 and 15.15 MHz.

Video 3: Time evolution of the plate vibrational mode at point 3 in Figure 2f.

The corresponding wavenumber and eigenfrequency are -17,453 m−1 and 14.77 MHz.

Video 4: Time evolution of the plate vibrational mode at point 4 in Figure 2f.

The corresponding wavenumber and eigenfrequency are 17,453 m−1 and 15.15 MHz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, J., Kim, K.W. & Daraio, C. Experimental realization of on-chip topological nanoelectromechanical metamaterials. Nature 564, 229–233 (2018). https://doi.org/10.1038/s41586-018-0764-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0764-0

Keywords

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing