Letter | Published:

Extreme-ultraviolet refractive optics

Naturevolume 564pages9194 (2018) | Download Citation


Refraction is a well-known optical phenomenon that alters the direction of light waves propagating through matter. Microscopes, lenses and prisms based on refraction are indispensable tools for controlling light beams at visible, infrared, ultraviolet and X-ray wavelengths1. In the past few decades, a range of extreme-ultraviolet and soft-X-ray sources has been developed in laboratory environments2,3,4 and at large-scale facilities5,6. But the strong absorption of extreme-ultraviolet radiation in matter hinders the development of refractive lenses and prisms in this spectral region, for which reflective mirrors and diffractive Fresnel zone plates7 are instead used for focusing. Here we demonstrate control over the refraction of extreme-ultraviolet radiation by using a gas jet with a density gradient across the profile of the extreme-ultraviolet beam. We produce a gas-phase prism that leads to a frequency-dependent deflection of the beam. The strong deflection near to atomic resonances is further used to develop a deformable refractive lens for extreme-ultraviolet radiation, with low absorption and a focal length that can be tuned by varying the gas pressure. Our results open up a route towards the transfer of refraction-based techniques, which are well established in other spectral regions, to the extreme-ultraviolet domain.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Snigirev, A., Kohn, V., Snigireva, I. & Lengeler, B. A compound refractive lens for focusing high-energy X-rays. Nature 384, 49–51 (1996).

  2. 2.

    Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31 (1988).

  3. 3.

    Rocca, J. J. Table-top soft X-ray lasers. Rev. Sci. Instrum. 70, 3799–3827 (1999).

  4. 4.

    Giulietti, D. & Gizzi, L. A. X-ray emission from laser-produced plasmas. Riv. Nuovo Cim. 21, 1–93 (1998).

  5. 5.

    Marr, G. V. Handbook on Synchrotron Radiation: Vacuum Ultraviolet and Soft X-ray Processes Vol. 2 (Elsevier, Amsterdam, 2013).

  6. 6.

    Allaria, E. et al. Highly coherent and stable pulses from the Fermi seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704 (2012).

  7. 7.

    Baez, A. V. A self-supporting metal Fresnel zone-plate to focus extreme ultra-violet and soft X-rays. Nature 186, 958 (1960).

  8. 8.

    Röntgen, W. C. Über eine neue Art von Strahlen: Vorläufige Mittheilung. Sitzungsber. Phys. Med. Gesell. Würzburg (1895).

  9. 9.

    Santoro, G. et al. Use of intermediate focus for grazing incidence small and wide angle X-ray scattering experiments at the beamline P03 of PETRA III, DESY. Rev. Sci. Instrum. 85, 043901 (2014).

  10. 10.

    Chollet, M. et al. The X-ray pump–probe instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 503–507 (2015).

  11. 11.

    Heimann, P. et al. Compound refractive lenses as prefocusing optics for X-ray FEL radiation. J. Synchrotron Radiat. 23, 425–429 (2016).

  12. 12.

    Lengeler, B. et al. A microscope for hard X-rays based on parabolic compound refractive lenses. Appl. Phys. Lett. 74, 3924–3926 (1999).

  13. 13.

    Schroer, C. G. et al. Hard X-ray nanoprobe based on refractive X-ray lenses. Appl. Phys. Lett. 87, 124103 (2005).

  14. 14.

    Meijer, J.-M. et al. Observation of solid–solid transitions in 3D crystals of colloidal superballs. Nat. Commun. 8, 14352 (2017).

  15. 15.

    Schroer, C. G. et al. Coherent X-ray diffraction imaging with nanofocused illumination. Phys. Rev. Lett. 101, 090801 (2008).

  16. 16.

    Wang, Y., Yun, W. & Jacobsen, C. Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging. Nature 424, 50 (2003).

  17. 17.

    Pan, H. et al. Low chromatic Fresnel lens for broadband attosecond XUV pulse applications. Opt. Express 24, 16788–16798 (2016).

  18. 18.

    Hahn, E. L. Nuclear induction due to free Larmor precession. Phys. Rev. 77, 297–298 (1950).

  19. 19.

    Wu, M., Chen, S., Camp, S., Schafer, K. J. & Gaarde, M. B. Theory of strong-field attosecond transient absorption. J. Phys. B 49, 062003 (2016).

  20. 20.

    Bengtsson, S. et al. Space–time control of free induction decay in the extreme ultraviolet. Nat. Photon. 11, 252–258 (2017).

  21. 21.

    Liao, C.-T., Sandhu, A., Camp, S., Schafer, K. J. & Gaarde, M. B. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains. Phys. Rev. Lett. 114, 143002 (2015).

  22. 22.

    Schütte, B., Arbeiter, M., Fennel, T., Vrakking, M. J. J. & Rouzée, A. Rare-gas clusters in intense extreme-ultraviolet pulses from a high-order harmonic source. Phys. Rev. Lett. 112, 073003 (2014).

  23. 23.

    Semushin, S. & Malka, V. High density gas jet nozzle design for laser target production. Rev. Sci. Instrum. 72, 2961–2965 (2001).

  24. 24.

    Tzallas, P., Charalambidis, D., Papadogiannis, N. A., Witte, K. & Tsakiris, G. D. Direct observation of attosecond light bunching. Nature 426, 267 (2003).

  25. 25.

    Takahashi, E. J., Lan, P., Mücke, O. D., Nabekawa, Y. & Midorikawa, K. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses. Nat. Commun. 4, 2691 (2013).

  26. 26.

    Manschwetus, B. et al. Two-photon double ionization of neon using an intense attosecond pulse train. Phys. Rev. A 93, 061402 (2016).

  27. 27.

    Barillot, T. R. et al. Towards XUV pump-probe experiments in the femtosecond to sub-femtosecond regime: new measurement of the helium two-photon ionization cross-section. Chem. Phys. Lett. 683, 38–42 (2017).

  28. 28.

    Rupp, D. et al. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source. Nat. Commun. 8, 493 (2017).

  29. 29.

    Flögel, M. et al. Rabi oscillations in extreme ultraviolet ionization of atomic argon. Phys. Rev. A 95, 021401 (2017).

  30. 30.

    Schafer, K. J. & Kulander, K. C. High harmonic generation from ultrafast pump lasers. Phys. Rev. Lett. 78, 638–641 (1997).

  31. 31.

    Frühling, U. et al. Single-shot terahertz-field-driven X-ray streak camera. Nat. Photon. 3, 523 (2009).

  32. 32.

    Mauritsson, J. et al. Measurement and control of the frequency chirp rate of high-order harmonic pulses. Phys. Rev. A 70, 021801 (2004).

  33. 33.

    Valentin, C. et al. Spectral selection of high harmonics via spatial filtering. In High-Brightness Sources and Light-driven Interactions HW3A.3 (Optical Society of America, 2018).

  34. 34.

    Neidel, C. et al. Probing time-dependent molecular dipoles on the attosecond time scale. Phys. Rev. Lett. 111, 033001 (2013).

  35. 35.

    Drescher, L. et al. Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation. J. Chem. Phys. 145, 011101 (2016).

  36. 36.

    Galbraith, M. C. E. et al. Few-femtosecond passage of conical intersections in the benzene cation. Nat. Commun. 8, 1018 (2017).

  37. 37.

    He, X. et al. Spatial and spectral properties of the high-order harmonic emission in argon for seeding applications. Phys. Rev. A 79, 063829 (2009).

  38. 38.

    Gademann, G., Ple, F., Paul, P.-M. & Vrakking, M. J. J. Carrier-envelope phase stabilization of a terawatt level chirped pulse amplifier for generation of intense isolated attosecond pulses. Opt. Express 19, 24922 (2011).

  39. 39.

    Born, M. & Wolf, E. Principles of Optics 7th expanded edn (Cambridge Univ. Press, Cambridge, 1999).

  40. 40.

    Wiese, W. L. Smith, M. W. & Glennon, B. M. Atomic Transition Probabilities: Hydrogen through Neon. Technical report, National Standard Reference Data System. (NBS, 1966).

  41. 41.

    Wiese, W. L. Smith, M. W. & Miles, B. M. Atomic Transition Probabilities: Sodium through Calcium. Technical report, National Standard Reference Data System (NBS, 1969).

Download references


We thank A. A. Ünal and R. Schumann for their support with the laser systems. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie-Sklodowska-Curie grant agreement no. 641789 MEDEA.

Reviewer information

Nature thanks J. Cryan, M. Gaarde and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information


  1. Max-Born-Institut, Berlin, Germany

    • L. Drescher
    • , O. Kornilov
    • , T. Witting
    • , G. Reitsma
    • , N. Monserud
    • , A. Rouzée
    • , J. Mikosch
    • , M. J. J. Vrakking
    •  & B. Schütte


  1. Search for L. Drescher in:

  2. Search for O. Kornilov in:

  3. Search for T. Witting in:

  4. Search for G. Reitsma in:

  5. Search for N. Monserud in:

  6. Search for A. Rouzée in:

  7. Search for J. Mikosch in:

  8. Search for M. J. J. Vrakking in:

  9. Search for B. Schütte in:


L.D. and B.S. performed the prism experiments. B.S. performed the lens experiments. O.K. carried out the simulations. All authors discussed the results and contributed to writing the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to O. Kornilov or B. Schütte.

About this article

Publication history




Issue Date




By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.