Letter | Published:

Late Middle Pleistocene Levallois stone-tool technology in southwest China

Naturevolume 565pages8285 (2019) | Download Citation

Subjects

Abstract

Levallois approaches are one of the best known variants of prepared-core technologies, and are an important hallmark of stone technologies developed around 300,000 years ago in Africa and west Eurasia1,2. Existing archaeological evidence suggests that the stone technology of east Asian hominins lacked a Levallois component during the late Middle Pleistocene epoch and it is not until the Late Pleistocene (around 40,000–30,000 years ago) that this technology spread into east Asia in association with a dispersal of modern humans. Here we present evidence of Levallois technology from the lithic assemblage of the Guanyindong Cave site in southwest China, dated to approximately 170,000–80,000 years ago. To our knowledge, this is the earliest evidence of Levallois technology in east Asia. Our findings thus challenge the existing model of the origin and spread of Levallois technologies in east Asia and its links to a Late Pleistocene dispersal of modern humans.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

All data are available from the corresponding authors upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Monnier, G. F. The Lower/Middle Paleolithic periodization in western Europe: an evaluation. Curr. Anthropol. 47, 709–744 (2006).

  2. 2.

    Mcbrearty, S. & Brooks, A. S. The revolution that wasn’t: a new interpretation of the origin of modern human behavior. J. Hum. Evol. 39, 453–563 (2000).

  3. 3.

    Lycett, S. J. & Eren, M. I. Levallois lessons: the challenge of integrating mathematical models, quantitative experiments and the archaeological record. World Archaeol. 45, 519–538 (2013).

  4. 4.

    Foley, R. & Lahr, M. M. Mode 3 technologies and the evolution of modern humans. Camb. Archaeol. J. 7, 3–36 (1997).

  5. 5.

    Adler, D. S. et al. Early Levallois technology and the Lower to Middle Paleolithic transition in the Southern Caucasus. Science 345, 1609–1613 (2014).

  6. 6.

    Tryon, C. A., McBrearty, S. & Texier, P.-J. Levallois lithic technology from the Kapthurin formation, Kenya: Acheulian origin and Middle Stone Age diversity. Afr. Archaeol. Rev. 22, 199–229 (2005).

  7. 7.

    Akhilesh, K. et al. Early Middle Palaeolithic culture in India around 385–172 ka reframes Out of Africa models. Nature 554, 97–101 (2018).

  8. 8.

    Boëda, E., Hou, Y. M., Forestier, H., Sarel, J. & Wang, H. M. Levallois and non-Levallois blade production at Shuidonggou in Ningxia, North China. Quat. Int. 295, 191–203 (2013).

  9. 9.

    Li, F., Chen, F., Wang, Y. & Gao, X. Technology diffusion and population migration reflected in blade technologies in northern China in the Late Pleistocene. Sci. China Earth Sci. 59, 1540–1553 (2016).

  10. 10.

    Brantingham, P. J., Olsen, J. W., Rech, J. A. & Krivoshapkin, A. I. Raw material quality and prepared core technologies in northeast Asia. J. Archaeol. Sci. 27, 255–271 (2000).

  11. 11.

    Li, F. et al. The easternmost Middle Paleolithic (Mousterian) from Jinsitai Cave, North China. J. Hum. Evol. 114, 76–84 (2018).

  12. 12.

    Seong, C. & Bae, C. J. The eastern Asian ‘Middle Palaeolithic’ revisited: a view from Korea. Antiquity 90, 1151–1165 (2016).

  13. 13.

    Sato, H., Nishiaki, Y. & Suzuki, M. in The Definition and Interpretation of Levallois Technology (eds Dibble, H. L. & Bar-Yosef, O.) 485–500 (Prehistory Press, Madison, 1995).

  14. 14.

    Zwyns, N. in Encyclopedia of Global Archaeology (eds Gladyshev, S. et al.) 5025–5032 (Springer, New York, 2014).

  15. 15.

    Gao, X. & Norton, C. J. A critique of the Chinese ‘Middle Palaeolithic’. Antiquity 76, 397–412 (2002).

  16. 16.

    Li, Y. & Wen, B. Guanyindong: A Lower Paleolithic Site at Qianxi County, Guizhou Province (Cultural Relics Press, Beijing, China, 1986).

  17. 17.

    Shen, G. J. & Jin, L. H. U-series dating of speleothem samples from Guanyindong Cave at Qianxi County, Guizhou Province. Acta Anthropologica Sinica 11, 93–100 (1992).

  18. 18.

    Yuan, S. X., Chen, T. M. & Gao, S. J. Uranium series chronological sequence of some Paleolithic sites in South China. Acta Anthropologica Sinica 5, 179–190 (1986).

  19. 19.

    Grün, R., Eggins, S., Kinsley, L., Moseley, H., Sambridge, M. Laser ablation U-series analysis of fossil bones and teeth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 416, 150–167 (2014). 

  20. 20.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

  21. 21.

    Wang, W. et al. Panxian Dadong, South China: establishing a record of Middle Pleistocene climatic changes. Asian Perspect. 43, 302–313 (2004).

  22. 22.

    Karkanas, P., Schepartz, L. A., Miller-Antonio, S., Wang, W. & Huang, W. Late Middle Pleistocene climate in southwestern China: inferences from the stratigraphic record of Panxian Dadong Cave, Guizhou. Quat. Sci. Rev. 27, 1555–1570 (2008).

  23. 23.

    Richter, D. et al. The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age. Nature 546, 293–296 (2017).

  24. 24.

    Hershkovitz, I. et al. The earliest modern humans outside Africa. Science 359, 456–459 (2018).

  25. 25.

    Liu, W. et al. Human remains from Zhirendong, South China, and modern human emergence in East Asia. Proc. Natl Acad. Sci. USA 107, 19201–19206 (2010).

  26. 26.

    Liu, W. et al. The earliest unequivocally modern humans in southern China. Nature 526, 696–699 (2015).

  27. 27.

    Li, Z.-Y. et al. Late Pleistocene archaic human crania from Xuchang, China. Science 355, 969–972 (2017).

  28. 28.

    Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013).

  29. 29.

    Yamei, H. et al. Mid-Pleistocene Acheulean-like stone technology of the Bose basin, South China. Science 287, 1622–1626 (2000).

  30. 30.

    Li, H., Kuman, K. & Li, C. What is currently (un)known about the Chinese Acheulean, with implications for hypotheses on the earlier dispersal of hominids. C. R. Palevol. 17, 120–130 (2016).

  31. 31.

    Boëda, E. in The Definition and Interpretation of Levallois Technology (eds Dibble, H. & Bar-Yosef, O.) 41–68 (Prehistory Press, Madison, 1995).

  32. 32.

    Brantingham, P. J. & Kuhn, S. L. Constraints on Levallois core technology: a mathematical model. J. Archaeol. Sci. 28, 747–761 (2001).

  33. 33.

    Eren, M. I. & Lycett, S. J. Why Levallois? A morphometric comparison of experimental ‘preferential’ Levallois flakes versus debitage flakes. PLoS ONE 7, e29273 (2012).

  34. 34.

    White, M., Ashton, N. & Scott, B. in The Ancient Human Occupation of Britain (eds Ashton, N. et al.) 53–66 (Elsevier, Amsterdam, 2011).

  35. 35.

    Van Peer, P. The Levallois reduction strategy (Prehistory Press, Madison, 1992).

  36. 36.

    Schlanger, N. Understanding Levallois: lithic technology and cognitive archaeology. Camb. Archaeol. J. 6, 231–254 (1996).

  37. 37.

    Mellars, P. A. The Neanderthal Legacy: An Archaeological Perspective from Western Europe (Princeton Univ. Press, Princeton, 1995).

  38. 38.

    Monnier, G. F. & Missal, K. Another Mousterian Debate? Bordian facies, chaîne opératoire technocomplexes, and patterns of lithic variability in the western European Middle and Upper Pleistocene. Quat. Int. 350, 59–83 (2014).

  39. 39.

    Malinsky-Buller, A. The muddle in the Middle Pleistocene: the Lower–Middle Paleolithic transition from the Levantine perspective. J. World Prehist. 29, 1–78 (2016).

  40. 40.

    Barzilai, O., Malinsky-Buller, A. & Ackermann, O. Kefar Menachem West: a Lower Paleolithic site in the southern Shephela, Israel. J. Israel Prehist. Soc. 36, 7–38 (2006).

  41. 41.

    White, M. & Ashton, N. Lower Palaeolithic core technology and the origins of the Levallois method in north-western Europe. Curr. Anthropol. 44, 598–609 (2003).

  42. 42.

    Niu, D. et al. The initial Upper Palaeolithic in northwest China: new evidence of cultural variability and change from Shuidonggou locality 7. Quat. Int. 400, 111–119 (2016).

  43. 43.

    Shimelmitz, R., Weinstein-Evron, M., Ronen, A. & Kuhn, S. L. The Lower to Middle Paleolithic transition and the diversification of Levallois technology in the Southern Levant: evidence from Tabun Cave, Israel. Quat. Int. 409, 23–40 (2016).

  44. 44.

    Brantingham, P. J., Kuhn, S. L. & Kerry, K. W. The Early Upper Paleolithic beyond Western Europe (California Univ. Press, 2004).

  45. 45.

    Cahen, D. Les industries préhistoriques des nappes alluviales de Petit-Spiennes et de Mesvin. Notae Praehistoricae 1, 70–74 (1981).

  46. 46.

    Cahen, D., Haesaerts, P. & Watteyne, D. La nappe alluviale de Petit-Spiennes et le début du débitage levallois dans la vallée de la Haine. Archaeologia Belgica Bruxelles 1, 7–16 (1985).

  47. 47.

    Watteyne, D. Petit-Spiennes: industrie (s) a débitage Levallois et para-Levallois. Notae Praehistoricae 5, 95–104 (1985).

  48. 48.

    Roe, D. A. The Lower and Middle Palaeolithic Periods in Britain Vol. 46 (Routledge, London, 2014).

  49. 49.

    Otte, M. in The Definition and Interpretation of Levallois technology (eds Dibble, H. & Bar-Yosef, O.) 117–124 (Prehistory Press, Madison, 1995).

  50. 50.

    Ryssaert, C. Some new insights in an old collection: lithic technology at Mesvin IV. Notae Praehistoricae 26, 91–99 (2006).

  51. 51.

    Kuhn, S. L. Mousterian Lithic Technology (Princeton Univ. Press, Princeton, 1995).

  52. 52.

    Delagnes, A. in The Definition and Interpretation of Levallois technology Monographs in World Archaeology Vol. 23 (eds Bar-Yosef, O. & Dibble, H.) 201–212 (Prehistory Press, Madison, 1995).

  53. 53.

    Chazan, M. Redefining Levallois. J. Hum. Evol. 33, 719–735 (1997).

  54. 54.

    Picin, A. Technological adaptation and the emergence of Levallois in Central Europe: new insight from the Markkleeberg and Zwochau open-air sites in Germany. J. Quat. Sci. 33, 300–312 (2018).

  55. 55.

    Boëda, E. & Pelegrin, J. Approche technologique du nucleus levallois a éclat. Etudes Préhistoriques Lyon 15, 41–48 (1979).

  56. 56.

    Boëda, E. Approche technologique du concept Levallois et évaluation de son champ d’application: étude de trois gisement saaliens et weichseliens de la France septentrionale. PhD thesis, Université de Paris X (1986).

  57. 57.

    Scott, R. The Early Middle Palaeolithic of Britain; origins, technology and landscape. PhD thesis, Durham University (2006).

  58. 58.

    Bolton, L. Assessing the Origins of Levallois through Lower Palaeolithic Core Variation: A Comparative Study of Simple Prepared Cores in Northwest Europe. PhD thesis, University of Southampton (2015).

  59. 59.

    Huntley, D. J., Godfrey-Smith, D. I. & Thewalt, M. L. W. Optical dating of sediments. Nature 313, 105–107 (1985).

  60. 60.

    Aitken, M. J. An Introduction to Optical Dating (Oxford Univ. Press, Oxford, 1998).

  61. 61.

    Roberts, R. G. et al. Optical dating in archaeology: thirty years in retrospect and grand challenges for the future. J. Archaeol. Sci. 56, 41–60 (2015).

  62. 62.

    Wintle, A. G. Luminescence dating: laboratory procedures and protocols. Radiat. Meas. 27, 769–817 (1997).

  63. 63.

    Bøtter-Jensen, L. & Mejdahl, V. Assessment of beta dose-rate using a GM multicounter system. Int. J. Rad. Appl. Instrum. D 14, 187–191 (1988).

  64. 64.

    Rhodes, E. J. & Schwenninger, J.-L. Dose rates and radioisotope concentrations in the concrete calibration blocks at Oxford. Ancient TL 25, 5–8 (2007).

  65. 65.

    Mercier, N. & Falguères, C. Field gamma dose-rate measurement with a NaI(Tl) detector: re-evaluation of the “threshold” technique. Anc. TL 25, 1–4 (2007).

  66. 66.

    Prescott, J. R. & Hutton, J. T. Cosmic-ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiat. Meas. 23, 497–500 (1994).

  67. 67.

    Smith, M. A., Prescott, J. R. & Head, M. J. Comparison of 14C and luminescence chronologies at Puritjarra rock shelter, central Australia. Quat. Sci. Rev. 16, 299–320 (1997).

  68. 68.

    Bøtter-Jensen, L., Andersen, C. E., Duller, G. A. T. & Murray, A. S. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiat. Meas. 37, 535–541 (2003).

  69. 69.

    Bøtter-Jensen, L., Bulur, E., Duller, G. A. T. & Murray, A. S. Advances in luminescence instrument systems. Radiat. Meas. 32, 523–528 (2000).

  70. 70.

    Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H. & Olley, J. M. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part 1, experimental design and statistical models. Archaeometry 41, 339–364 (1999).

  71. 71.

    Murray, A. S. & Wintle, A. G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 32, 57–73 (2000).

  72. 72.

    Duller, G. A. T. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiat. Meas. 37, 161–165 (2003).

  73. 73.

    Jacobs, Z., Duller, G. A. T. & Wintle, A. G. Interpretation of single grain D e distributions and calculation of D e. Radiat. Meas. 41, 264–277 (2006).

  74. 74.

    Galbraith, R. F. & Roberts, R. G. Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quat. Geochronol. 11, 1–27 (2012).

  75. 75.

    Gliganic, L. A., Jacobs, Z., Roberts, R. G., Domínguez-Rodrigo, M. & Mabulla, A. Z. P. New ages for Middle and Later Stone Age deposits at Mumba rockshelter, Tanzania: optically stimulated luminescence dating of quartz and feldspar grains. J. Hum. Evol. 62, 533–547 (2012).

  76. 76.

    Duller, G. A. T. Improving the accuracy and precision of equivalent doses determined using the optically stimulated luminescence signal from single grains of quartz. Radiat. Meas. 47, 770–777 (2012).

  77. 77.

    Thomsen, K. J. et al. Testing single-grain quartz OSL methods using sediment samples with independent age control from the Bordes-Fitte rockshelter (Roches d’Abilly site, Central France). Quat. Geochronol. 31, 77–96 (2016).

  78. 78.

    Guo, Y.-J. et al. New ages for the Upper Palaeolithic site of Xibaimaying in the Nihewan Basin, northern China: implications for small-tool and microblade industries in north-east Asia during Marine Isotope Stages 2 and 3. J. Quat. Sci. 32, 540–552 (2017).

  79. 79.

    Li, B., Jacobs, Z. & Roberts, R. G. Investigation of the applicability of standardised growth curves for OSL dating of quartz from Haua Fteah cave, Libya. Quat. Geochronol. 35, 1–15 (2016).

  80. 80.

    Li, B., Jacobs, Z., Roberts, R. G., Galbraith, R. & Peng, J. Variability in quartz OSL signals caused by measurement uncertainties: problems and solutions. Quat. Geochronol. 41, 11–25 (2017).

  81. 81.

    Roberts, H. M. & Duller, G. A. T. Standardised growth curves for optical dating of sediment using multiple-grain aliquots. Radiat. Meas. 38, 241–252 (2004).

  82. 82.

    Li, B., Roberts, R. G., Jacobs, Z. & Li, S. H. Potential of establishing a ‘global standardised growth curve’ (gSGC) for optical dating of quartz from sediments. Quat. Geochronol. 27, 94–104 (2015).

  83. 83.

    Roberts, R. G., Galbraith, R. F., Yoshida, H., Laslett, G. M. & Olley, J. M. Distinguishing dose populations in sediment mixtures: a test of single-grain optical dating procedures using mixtures of laboratory-dosed quartz. Radiat. Meas. 32, 459–465 (2000).

  84. 84.

    Galbraith, R. F. & Green, P. F. Estimating the component ages in a finite mixture. Int. J. Rad. Appl. Instrum. D 17, 197–206 (1990).

  85. 85.

    Guralnik, B. et al. Radiation-induced growth and isothermal decay of infrared-stimulated luminescence from feldspar. Radiat. Meas. 81, 224–231 (2015).

  86. 86.

    Rousseeuw, P. J. & Croux, C. Alternatives to the median absolute deviation. J. Am. Stat. Assoc. 88, 1273–1283 (1993).

  87. 87.

    Rousseeuw, P. J., Debruyne, M., Engelen, S. & Hubert, M. Robustness and outlier detection in chemometrics. Crit. Rev. Anal. Chem. 36, 221–242 (2006).

  88. 88.

    Arnold, L. J. & Roberts, R. G. Stochastic modelling of multi-grain equivalent dose (D e) distributions: implications for OSL dating of sediment mixtures. Quat. Geochronol. 4, 204–230 (2009).

Download references

Acknowledgements

This work was supported by the Australian Research Council through Future Fellowships to B.L. (FT140100384) and B.M. (FT140100101), a grant from the National Science Foundation of China to J.-F.Z. (NSFC, 41471003), postgraduate scholarships from the University of Wollongong to Y.H. and X.R. and the China Scholarship Council to X.R. (201506010345), the Chinese Academy of Science (CAS) Strategic Priority Research Program Grants of ‘Macroevolutionary Processes and Paleoenvironments of Major Historical Biota’ (XDPB05), State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS (SKLLQG1501) and National Science Foundation of China (41272033) to Y.-M.H. We thank S. Lin for assistance with artefact analysis and valuable comments on the manuscript; Y.-M. Hou for assistance with CT scanning on stone artefacts; R. G. Roberts, Z. Jacobs, Y. Jafari and T. Lachlan for support and assistance in the OSL laboratory; M. Otte and P. Zhang for valuable discussions on lithic assemblage; Y.-S. Lou, N. Ma, X.-W. Li and L. Lei for assistance with lithic observation.

Reviewer information

Nature thanks C. A. Tryon and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

  1. Centre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, New South Wales, Australia

    • Yue Hu
    • , Ben Marwick
    • , Xue Rui
    •  & Bo Li
  2. Department of Anthropology, University of Washington, Seattle, WA, USA

    • Ben Marwick
  3. MOE Laboratory for Earth Surface Processes, Department of Geography, College of Urban and Environmental Sciences, Peking University, Beijing, China

    • Jia-Fu Zhang
  4. Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China

    • Ya-Mei Hou
    • , Jian-Ping Yue
    •  & Wei-Wen Huang
  5. CAS Centre for Excellence in Life and Paleo-environment, Beijing, China

    • Ya-Mei Hou
    •  & Jian-Ping Yue
  6. Qianxi County Bureau of Cultural Relics Protection, Bijie, China

    • Wen-Rong Chen
  7. ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, Australia

    • Bo Li

Authors

  1. Search for Yue Hu in:

  2. Search for Ben Marwick in:

  3. Search for Jia-Fu Zhang in:

  4. Search for Xue Rui in:

  5. Search for Ya-Mei Hou in:

  6. Search for Jian-Ping Yue in:

  7. Search for Wen-Rong Chen in:

  8. Search for Wei-Wen Huang in:

  9. Search for Bo Li in:

Contributions

B.L., Y.H., W.-W.H. and J.-F.Z. conceived and coordinated the study; Y.H., B.M. and J.-P.Y. conducted the stone artefact analysis; B.L., Y.H., J.-F.Z., W.-R.C., W.-W.H. and Y.-M.H. planned and directed field investigations and stratigraphic analysis. Y.H., B.L., J.-F.Z., X.R., W.-W.H. and Y.-M.H. collected samples for dating; Y.H., B.L., J.-F.Z. and X.R. measured OSL samples and analysed the dating results; B.M., B.L. and Y.H. wrote the manuscript, with contributions from the other authors.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Ben Marwick or Bo Li.

Extended data figures and tables

  1. Extended Data Fig. 1 Photos showing the landscape and location of the Guanyindong Cave.

    a, Southward view of the Guanyindong Cave. b, The main entrance of the cave.

  2. Extended Data Fig. 2 Plan view and stratigraphy of the Guanyindong Cave.

    a, Plan view of the cave, main excavation area and the residual profiles from the south wall. The blue dots and the numbers next to each of the dots represent the locations of U-series dating samples have been taken previously17 (see Supplementary Information for discussion of the U-series results); sample codes from 1 to 8 are QGC-19-1, QGC-19-2, QGC-4, QGC-21, QGB-4, QGC-7 and QGC-23, respectively. The green circles are the locations of profiles 1, 2a, 2b and 3. The red squares show the locations of the residual profiles S1 and S2, where the OSL samples were taken. b, Detail of the numbered stratigraphic layers at the main entrance of the cave. The stratigraphic layer numbers are shown in yellow circles. The red rectangles show the locations of the two south-wall sections (S1 and S2) where OSL samples were taken. The locations of OSL samples are shown in red circles, with the sample code shown inside (for example, number 1 represents GYD-OSL1; see Extended Data Figs. 3, 4 for more details). a, b, Images were adapted from a previous study16, copyright 1986.

  3. Extended Data Fig. 3 General view of the residual profile S1 from the cave entrance.

    a, Photo taken from the interior of the cave, showing the location of the residual profile S1 at the south wall (marked by a rectangle with details shown in b and c). b, Photo showing details of the residual profile S1 at the south wall and the location of all OSL samples from layer 1 and layers 4–8. The details of layers 3–9 inside the yellow rectangle are shown in c. c, Photo showing the details of sedimentary layers 3–9 of group B, and the location of OSL samples. The stratigraphic layer numbers are shown in blue circles and the location of OSL samples are marked by yellow circles with sample names shown next to each of them. The dashed yellow lines in b and c show the boundaries between the layers.

  4. Extended Data Fig. 4 General view of the residual profile S2 outside the cave entrance.

    a, Photo taken from top of the cave, showing the location of the residual profile S2 (indicated by the rectangle). b, Photo taken from outside the cave, showing the location of the residual profile S2 (indicated by the rectangle). c, Photo showing the details of sedimentary layers (layer 2 and reworked layer 1) of residual profile S2, and the location of OSL samples. The dashed yellow line shows the boundary between layers 1 and 2. The stratigraphic layer numbers are shown in blue circles and the location of OSL samples are marked by yellow circles with sample names shown next to each of them.

  5. Extended Data Fig. 5 Photographs of selected Levallois cores.

    a, d, f, Levallois recurrent cores. b, c, e, Levallois preferential cores. The line drawings of these artefacts are shown in Fig. 3a–f. The artefacts shown in b and c were recovered from group A.

  6. Extended Data Fig. 6 Photographs of selected Levallois flakes and tools.

    gk, n, Levallois flakes. l, Débordant. m, Tools made on Levallois blanks. o, p, Pseudo-Levallois points. The line drawings of these artefacts are shown in Fig. 3g–p.

  7. Extended Data Fig. 7 Photographs of selected Levallois tools and flakes with prepared platform.

    qs, Tools made on Levallois blanks. tz, Flakes with prepared platforms. The line drawings of these artefacts are shown in Fig. 3q–z. The artefact shown in q was recovered from group A, and those shown in r and s were from group B.

  8. Extended Data Fig. 8 Distributions of metric variables on flakes.

    a, Histogram of flake lengths, coloured by size class. b, Box-and-whisker plots of a selection of metric variables to show technological variation across the size classes to reveal the lithic reduction sequence (n = 1,177 flakes). Centre lines show data median, boxes show first and third quartiles (the 25th and 75th percentiles), and the whiskers extend from the upper and lower hinge to the largest and smallest values that are no further than 1.5 times the interquartile range from the hinge (which is the distance between the first and third quartiles). Data beyond the end of the whiskers are outlying points and are plotted individually. Linear dimensions are measured in mm, mass in g.

  9. Extended Data Fig. 9 Distributions of technological attributes of flakes across the five size classes.

    n = 1,177 flakes.

  10. Extended Data Fig. 10 Comparison of flakes from the upper (group A) and lower (group B) layers of the deposit (n = 204), with 117 pieces from the lower layers (dated to 170–160 ka) and 87 from the upper layer (dated to approximately 90–80 ka).

    a, Metric variables. Linear dimensions are measured in mm, mass in g. b, Technological variables. Centre lines show data median, boxes show first and third quartiles (the 25th and 75th percentiles), and the whiskers extend from the upper and lower hinge to the largest and smallest values no further than 1.5 times the interquartile range from the hinge. Data beyond the end of the whiskers are outlying points and are plotted individually.

Supplementary information

  1. Supplementary Information

    This file contains Supplementary Discussions, Supplementary Tables 1-5, Supplementary Figures 1-24, References, and Supplementary Data.

  2. Reporting Summary

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41586-018-0710-1

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.